操纵卤化物过氧化物晶体的结晶动力学以实现大面积太阳能模块

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-23 DOI:10.1038/s43246-024-00566-5
Zhaojin Wang, Xiao Duan, Jing Zhang, Wenbin Yuan, Dinghao Qu, You Chen, Lijuan He, Haoran Wang, Guang Yang, Wei Zhang, Yang Bai, Hui-Ming Cheng
{"title":"操纵卤化物过氧化物晶体的结晶动力学以实现大面积太阳能模块","authors":"Zhaojin Wang, Xiao Duan, Jing Zhang, Wenbin Yuan, Dinghao Qu, You Chen, Lijuan He, Haoran Wang, Guang Yang, Wei Zhang, Yang Bai, Hui-Ming Cheng","doi":"10.1038/s43246-024-00566-5","DOIUrl":null,"url":null,"abstract":"In the last decade, laboratory-scale single-junction perovskite solar cells have achieved a remarkable power conversion efficiency exceeding 26.1%. However, the transition to industrial-scale production has unveiled a significant efficiency gap. The central challenge lies in the difficulty of achieving uniform, high-quality perovskite films on a large scale. To tackle this issue, various innovative strategies for manipulating crystallization have emerged in recent years. Based on an in-depth fundamental understanding of the nucleation and growth mechanisms in large-area perovskite films prepared through blade/slot-die coating methods, this review offers a critical examination of crystallization manipulation strategies for large-area perovskite solar modules. Lastly, we explore future avenues aimed at enhancing the efficiency and stability of large-area PSMs, thereby steering the field toward commercially viable applications. A key challenge in scaling-up the synthesis of perovskite solar cells is ensuring the same crystal quality in a large-area device as on the lab scale. This Review discusses how perovskite crystallization kinetics can be controlled, so to achieve high power conversion efficiency and stability.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00566-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Manipulating the crystallization kinetics of halide perovskites for large-area solar modules\",\"authors\":\"Zhaojin Wang, Xiao Duan, Jing Zhang, Wenbin Yuan, Dinghao Qu, You Chen, Lijuan He, Haoran Wang, Guang Yang, Wei Zhang, Yang Bai, Hui-Ming Cheng\",\"doi\":\"10.1038/s43246-024-00566-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, laboratory-scale single-junction perovskite solar cells have achieved a remarkable power conversion efficiency exceeding 26.1%. However, the transition to industrial-scale production has unveiled a significant efficiency gap. The central challenge lies in the difficulty of achieving uniform, high-quality perovskite films on a large scale. To tackle this issue, various innovative strategies for manipulating crystallization have emerged in recent years. Based on an in-depth fundamental understanding of the nucleation and growth mechanisms in large-area perovskite films prepared through blade/slot-die coating methods, this review offers a critical examination of crystallization manipulation strategies for large-area perovskite solar modules. Lastly, we explore future avenues aimed at enhancing the efficiency and stability of large-area PSMs, thereby steering the field toward commercially viable applications. A key challenge in scaling-up the synthesis of perovskite solar cells is ensuring the same crystal quality in a large-area device as on the lab scale. This Review discusses how perovskite crystallization kinetics can be controlled, so to achieve high power conversion efficiency and stability.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00566-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00566-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00566-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,实验室规模的单结过氧化物太阳能电池取得了超过 26.1% 的显著功率转换效率。然而,在向工业规模生产过渡的过程中,我们发现了巨大的效率差距。核心挑战在于难以大规模实现均匀、高质量的过氧化物薄膜。为解决这一问题,近年来出现了各种创新的结晶操作策略。本综述基于对通过刀片/槽模镀膜方法制备的大面积过氧化物薄膜的成核和生长机制的深入基础理解,对大面积过氧化物太阳能模块的结晶控制策略进行了深入探讨。最后,我们探讨了旨在提高大面积 PSM 效率和稳定性的未来途径,从而将该领域引向商业上可行的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manipulating the crystallization kinetics of halide perovskites for large-area solar modules
In the last decade, laboratory-scale single-junction perovskite solar cells have achieved a remarkable power conversion efficiency exceeding 26.1%. However, the transition to industrial-scale production has unveiled a significant efficiency gap. The central challenge lies in the difficulty of achieving uniform, high-quality perovskite films on a large scale. To tackle this issue, various innovative strategies for manipulating crystallization have emerged in recent years. Based on an in-depth fundamental understanding of the nucleation and growth mechanisms in large-area perovskite films prepared through blade/slot-die coating methods, this review offers a critical examination of crystallization manipulation strategies for large-area perovskite solar modules. Lastly, we explore future avenues aimed at enhancing the efficiency and stability of large-area PSMs, thereby steering the field toward commercially viable applications. A key challenge in scaling-up the synthesis of perovskite solar cells is ensuring the same crystal quality in a large-area device as on the lab scale. This Review discusses how perovskite crystallization kinetics can be controlled, so to achieve high power conversion efficiency and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy Toward direct band gaps in typical 2D transition-metal dichalcogenides junctions via real and energy spaces tuning Transformation of europium metal-organic framework from 3D via 2D into exfoliating 3D for enzyme immobilization Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1