{"title":"采用介质流体的紧凑型两相浸入式冷却系统,适用于基于 PCB 的电力电子设备","authors":"Aleksandar Ristic-Smith;Daniel J. Rogers","doi":"10.1109/OJPEL.2024.3432989","DOIUrl":null,"url":null,"abstract":"This paper explores two-phase immersion cooling using sealed enclosures of dielectric fluid as a technique to achieve compact, power dense converters on a single printed circuit board (PCB). The proposed approach employs passive circulation of the fluid and does not introduce system complexity beyond a heat exchanger required to condense the vapour. A test apparatus representing six 650 V, 150 A semiconductor switches in an inverter rejecting heat to a 65\n<inline-formula><tex-math>$\\,^{\\circ }$</tex-math></inline-formula>\nC water cooling loop is developed. Pool boiling experiments on a flat surface in Novec 7000 dielectric fluid demonstrate critical heat flux of 43 W cm\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\n at a saturation temperature of 94\n<inline-formula><tex-math>$\\,^{\\circ }$</tex-math></inline-formula>\nC and a corresponding pressure of 593 kPa. By augmenting the surface with pin fins (representative of a heat spreader attached to a switch) and grit blasting to improve the surface micro-geometry, the maximum heat transfer coefficient increased from 1.5 W cm\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\n K\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\n to 3.4 W cm\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\n K\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\n with a corresponding reduction in switch temperature from 125\n<inline-formula><tex-math>$\\,^{\\circ }$</tex-math></inline-formula>\nC to 107\n<inline-formula><tex-math>$\\,^{\\circ }$</tex-math></inline-formula>\nC at the total power dissipation of 186 W. A practical implementation with comparable thermal performance to the experimental apparatus but minimised volume of 0.12 L is presented. This yields a Cooling System Performance Index of 37 WL\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\n K\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\n, including the heat exchanger and printed circuit board with switches, decoupling capacitors and gate drivers.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612781","citationCount":"0","resultStr":"{\"title\":\"Compact Two-Phase Immersion Cooling With Dielectric Fluid for PCB-Based Power Electronics\",\"authors\":\"Aleksandar Ristic-Smith;Daniel J. Rogers\",\"doi\":\"10.1109/OJPEL.2024.3432989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores two-phase immersion cooling using sealed enclosures of dielectric fluid as a technique to achieve compact, power dense converters on a single printed circuit board (PCB). The proposed approach employs passive circulation of the fluid and does not introduce system complexity beyond a heat exchanger required to condense the vapour. A test apparatus representing six 650 V, 150 A semiconductor switches in an inverter rejecting heat to a 65\\n<inline-formula><tex-math>$\\\\,^{\\\\circ }$</tex-math></inline-formula>\\nC water cooling loop is developed. Pool boiling experiments on a flat surface in Novec 7000 dielectric fluid demonstrate critical heat flux of 43 W cm\\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\\n at a saturation temperature of 94\\n<inline-formula><tex-math>$\\\\,^{\\\\circ }$</tex-math></inline-formula>\\nC and a corresponding pressure of 593 kPa. By augmenting the surface with pin fins (representative of a heat spreader attached to a switch) and grit blasting to improve the surface micro-geometry, the maximum heat transfer coefficient increased from 1.5 W cm\\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\\n K\\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\\n to 3.4 W cm\\n<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula>\\n K\\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\\n with a corresponding reduction in switch temperature from 125\\n<inline-formula><tex-math>$\\\\,^{\\\\circ }$</tex-math></inline-formula>\\nC to 107\\n<inline-formula><tex-math>$\\\\,^{\\\\circ }$</tex-math></inline-formula>\\nC at the total power dissipation of 186 W. A practical implementation with comparable thermal performance to the experimental apparatus but minimised volume of 0.12 L is presented. This yields a Cooling System Performance Index of 37 WL\\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\\n K\\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\\n, including the heat exchanger and printed circuit board with switches, decoupling capacitors and gate drivers.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612781\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612781/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10612781/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了使用介质流体密封外壳进行两相浸入式冷却的技术,以在单个印刷电路板(PCB)上实现结构紧凑、功率密度高的转换器。建议的方法采用流体被动循环,除了冷凝蒸汽所需的热交换器外,不会引入复杂的系统。我们开发了一种测试装置,它代表了逆变器中的六个 650 V、150 A 半导体开关,将热量排出到 65$\,^{\circ }$C 的水冷循环中。在 Novec 7000 介电流体中的平面上进行的池沸腾实验表明,在饱和温度为 94$\^{circ }$C 和相应压力为 593 kPa 时,临界热通量为 43 W cm$^{-2}$。通过在表面增加针翅片(代表连接到开关上的散热器)和喷砂以改善表面微几何形状,最大传热系数从 1.5 W cm$^{-2}$ K$^{-1}$ 增加到 3.4 W cm$^{-2}$ K$^{-1}$,在总功率耗散为 186 W 的情况下,开关温度相应地从 125$\^{circ }$C 降至 107$\^{circ}$C。这使得冷却系统性能指数达到 37 WL$^{-1}$ K$^{-1}$,包括热交换器和带有开关、去耦电容器和栅极驱动器的印刷电路板。
Compact Two-Phase Immersion Cooling With Dielectric Fluid for PCB-Based Power Electronics
This paper explores two-phase immersion cooling using sealed enclosures of dielectric fluid as a technique to achieve compact, power dense converters on a single printed circuit board (PCB). The proposed approach employs passive circulation of the fluid and does not introduce system complexity beyond a heat exchanger required to condense the vapour. A test apparatus representing six 650 V, 150 A semiconductor switches in an inverter rejecting heat to a 65
$\,^{\circ }$
C water cooling loop is developed. Pool boiling experiments on a flat surface in Novec 7000 dielectric fluid demonstrate critical heat flux of 43 W cm
$^{-2}$
at a saturation temperature of 94
$\,^{\circ }$
C and a corresponding pressure of 593 kPa. By augmenting the surface with pin fins (representative of a heat spreader attached to a switch) and grit blasting to improve the surface micro-geometry, the maximum heat transfer coefficient increased from 1.5 W cm
$^{-2}$
K
$^{-1}$
to 3.4 W cm
$^{-2}$
K
$^{-1}$
with a corresponding reduction in switch temperature from 125
$\,^{\circ }$
C to 107
$\,^{\circ }$
C at the total power dissipation of 186 W. A practical implementation with comparable thermal performance to the experimental apparatus but minimised volume of 0.12 L is presented. This yields a Cooling System Performance Index of 37 WL
$^{-1}$
K
$^{-1}$
, including the heat exchanger and printed circuit board with switches, decoupling capacitors and gate drivers.