将金属有机框架衍生的 TiO2/Fe-TiO2 作为超级电容器的活性电极的电化学验证得到加强

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2024-07-24 DOI:10.1007/s40243-024-00269-4
Nizamudeen Cherupurakal, R. Krishnapriya, Arjunkumar Bojarajan, Tholkappiyan Ramachandran, Sambasivam Sangaraju, Mohammad Sayem Mozumder, Abdel-Hamid I. Mourad
{"title":"将金属有机框架衍生的 TiO2/Fe-TiO2 作为超级电容器的活性电极的电化学验证得到加强","authors":"Nizamudeen Cherupurakal,&nbsp;R. Krishnapriya,&nbsp;Arjunkumar Bojarajan,&nbsp;Tholkappiyan Ramachandran,&nbsp;Sambasivam Sangaraju,&nbsp;Mohammad Sayem Mozumder,&nbsp;Abdel-Hamid I. Mourad","doi":"10.1007/s40243-024-00269-4","DOIUrl":null,"url":null,"abstract":"<div><p>Developing supercapacitor materials that are both efficient and durable, with high cycle life and specific energy, poses a significant challenge due to issues in electrodes such as volume expansion and electrode degradation that occur over time. This work reports a simple, novel, and cost-effective synthesis method to fabricate high surface area “Iron (Fe) doped TiO<sub>2</sub> materials” <i>via</i> the metal-organic framework (MOF) route for supercapacitor application. Morphological analysis revealed a disc-like shaped pattern for pristine TiO<sub>2</sub> (PT), and a cuboid form for Fe-doped TiO<sub>2</sub> (FeT). The electrochemical investigation of MOF-derived PT and FeT electrode materials demonstrated the superior performance of FeT. Cyclic Voltammetry revealed enhanced electrochemical properties in FeT. Galvanostatic charge-discharge measurements confirmed FeT’s higher energy storage capacity, reaching a maximum specific capacitance of 925 Fg<sup>− 1</sup>. Long-term cycling tests exhibited excellent stability, with FeT retaining 67% of its initial capacitance after 6000 cycles and showing prolonged self-discharge. Overall, the results underscore the potential of Fe-doped TiO<sub>2</sub> for high-performance supercapacitors.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"361 - 373"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00269-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors\",\"authors\":\"Nizamudeen Cherupurakal,&nbsp;R. Krishnapriya,&nbsp;Arjunkumar Bojarajan,&nbsp;Tholkappiyan Ramachandran,&nbsp;Sambasivam Sangaraju,&nbsp;Mohammad Sayem Mozumder,&nbsp;Abdel-Hamid I. Mourad\",\"doi\":\"10.1007/s40243-024-00269-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing supercapacitor materials that are both efficient and durable, with high cycle life and specific energy, poses a significant challenge due to issues in electrodes such as volume expansion and electrode degradation that occur over time. This work reports a simple, novel, and cost-effective synthesis method to fabricate high surface area “Iron (Fe) doped TiO<sub>2</sub> materials” <i>via</i> the metal-organic framework (MOF) route for supercapacitor application. Morphological analysis revealed a disc-like shaped pattern for pristine TiO<sub>2</sub> (PT), and a cuboid form for Fe-doped TiO<sub>2</sub> (FeT). The electrochemical investigation of MOF-derived PT and FeT electrode materials demonstrated the superior performance of FeT. Cyclic Voltammetry revealed enhanced electrochemical properties in FeT. Galvanostatic charge-discharge measurements confirmed FeT’s higher energy storage capacity, reaching a maximum specific capacitance of 925 Fg<sup>− 1</sup>. Long-term cycling tests exhibited excellent stability, with FeT retaining 67% of its initial capacitance after 6000 cycles and showing prolonged self-discharge. Overall, the results underscore the potential of Fe-doped TiO<sub>2</sub> for high-performance supercapacitors.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"13 3\",\"pages\":\"361 - 373\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-024-00269-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-024-00269-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00269-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于电极会随着时间的推移出现体积膨胀和电极降解等问题,因此开发高效耐用、高循环寿命和高比能量的超级电容器材料是一项重大挑战。本研究报告介绍了一种简单、新颖、经济高效的合成方法,通过金属有机框架(MOF)路线制造出高比表面积的 "铁(Fe)掺杂 TiO2 材料",用于超级电容器。形态学分析表明,原始二氧化钛(PT)呈圆盘状,而掺铁二氧化钛(FeT)呈立方体状。对 MOF 衍生的 PT 和 FeT 电极材料进行的电化学研究表明,FeT 的性能更优越。循环伏安法显示,FeT 的电化学性能有所增强。电静态充放电测量证实了 FeT 具有更高的储能能力,最大比电容达到 925 Fg-1。长期循环测试表明,FeT 具有出色的稳定性,在 6000 次循环后仍能保持 67% 的初始电容,并显示出较长的自放电时间。总之,这些结果凸显了掺铁二氧化钛在高性能超级电容器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors

Developing supercapacitor materials that are both efficient and durable, with high cycle life and specific energy, poses a significant challenge due to issues in electrodes such as volume expansion and electrode degradation that occur over time. This work reports a simple, novel, and cost-effective synthesis method to fabricate high surface area “Iron (Fe) doped TiO2 materials” via the metal-organic framework (MOF) route for supercapacitor application. Morphological analysis revealed a disc-like shaped pattern for pristine TiO2 (PT), and a cuboid form for Fe-doped TiO2 (FeT). The electrochemical investigation of MOF-derived PT and FeT electrode materials demonstrated the superior performance of FeT. Cyclic Voltammetry revealed enhanced electrochemical properties in FeT. Galvanostatic charge-discharge measurements confirmed FeT’s higher energy storage capacity, reaching a maximum specific capacitance of 925 Fg− 1. Long-term cycling tests exhibited excellent stability, with FeT retaining 67% of its initial capacitance after 6000 cycles and showing prolonged self-discharge. Overall, the results underscore the potential of Fe-doped TiO2 for high-performance supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Novel hole transport materials of pyrogallol-sulfonamide hybrid: synthesis, optical, electrochemical properties and molecular modelling for perovskite solar cells Investigation of semiconductor to metallic transitions of perovskite CsGeCl3 material through induced pressure: a DFT calculation for photovoltaic and optoelectronic applications Mg(BH4)2-CH3NH2BH3@MgO solid state electrolyte for magnesium batteries Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization Sustainable construction: the use of cork material in the building industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1