电磁微/纳米网关的建模和性能评估

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-07-24 DOI:10.1016/j.nancom.2024.100527
Akram Galal , Xavier Hesselbach
{"title":"电磁微/纳米网关的建模和性能评估","authors":"Akram Galal ,&nbsp;Xavier Hesselbach","doi":"10.1016/j.nancom.2024.100527","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of nano-things communication has increased attention in recent years, serving different applications in many fields. Such applications need uplink and downlink communication between the nano-network and the macro-domain world through macro/nano-interfaces, where nano-sensors/actuators communicate with smart hybrid devices called micro/nano-gateways. The analytical evaluation of such gateways is mandatory, as it requires a precise study of their performance in handling traffic in the upstream/downstream directions. In this paper, an analytical evaluation of the micro/nano-gateway performance is studied using queueing theory to describe the behavior of the gateway handling the nano-network upstream traffic. The analytical investigation illustrates how different classes of upstream traffic will be processed by the gateway and distributed over three different queues according to traffic characteristics. The study shows the effect of the number of running servers inside each queue and the buffer size on the overall performance of the micro/nano-gateway.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"41 ","pages":"Article 100527"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878778924000334/pdfft?md5=fa5698b97b62967fefb2f1aeb5bb4282&pid=1-s2.0-S1878778924000334-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling and performance evaluation for electromagnetic micro/nano-gateway\",\"authors\":\"Akram Galal ,&nbsp;Xavier Hesselbach\",\"doi\":\"10.1016/j.nancom.2024.100527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of nano-things communication has increased attention in recent years, serving different applications in many fields. Such applications need uplink and downlink communication between the nano-network and the macro-domain world through macro/nano-interfaces, where nano-sensors/actuators communicate with smart hybrid devices called micro/nano-gateways. The analytical evaluation of such gateways is mandatory, as it requires a precise study of their performance in handling traffic in the upstream/downstream directions. In this paper, an analytical evaluation of the micro/nano-gateway performance is studied using queueing theory to describe the behavior of the gateway handling the nano-network upstream traffic. The analytical investigation illustrates how different classes of upstream traffic will be processed by the gateway and distributed over three different queues according to traffic characteristics. The study shows the effect of the number of running servers inside each queue and the buffer size on the overall performance of the micro/nano-gateway.</p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"41 \",\"pages\":\"Article 100527\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878778924000334/pdfft?md5=fa5698b97b62967fefb2f1aeb5bb4282&pid=1-s2.0-S1878778924000334-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778924000334\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000334","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纳米物联网通信受到越来越多的关注,在许多领域都有不同的应用。这些应用需要通过宏观/纳米接口在纳米网络和宏观领域之间进行上行和下行通信,其中纳米传感器/执行器与被称为微型/纳米网关的智能混合设备进行通信。对这类网关进行分析评估是非常必要的,因为这需要精确研究它们在处理上行/下行方向流量时的性能。本文使用排队理论对微型/纳米网关的性能进行了分析评估,以描述网关处理纳米网络上游流量的行为。分析调查说明了网关如何处理不同类别的上游流量,并根据流量特征将其分配到三个不同的队列中。研究显示了每个队列内运行服务器的数量和缓冲区大小对微型/纳米网关整体性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and performance evaluation for electromagnetic micro/nano-gateway

The Internet of nano-things communication has increased attention in recent years, serving different applications in many fields. Such applications need uplink and downlink communication between the nano-network and the macro-domain world through macro/nano-interfaces, where nano-sensors/actuators communicate with smart hybrid devices called micro/nano-gateways. The analytical evaluation of such gateways is mandatory, as it requires a precise study of their performance in handling traffic in the upstream/downstream directions. In this paper, an analytical evaluation of the micro/nano-gateway performance is studied using queueing theory to describe the behavior of the gateway handling the nano-network upstream traffic. The analytical investigation illustrates how different classes of upstream traffic will be processed by the gateway and distributed over three different queues according to traffic characteristics. The study shows the effect of the number of running servers inside each queue and the buffer size on the overall performance of the micro/nano-gateway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology Energy harvesting-based thermal aware routing protocol for lung terahertz nanosensor networks Design of triband circularly polarized hexagon shaped patch antenna using optimized Siamese heterogeneous convolutional neural networks for 5G wireless communication system Internet of harvester nano things: A future prospects Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1