近交系 F2 杂交中的基因型估算。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae107
Saul Pierotti, Bettina Welz, Mireia Osuna-López, Tomas Fitzgerald, Joachim Wittbrodt, Ewan Birney
{"title":"近交系 F2 杂交中的基因型估算。","authors":"Saul Pierotti, Bettina Welz, Mireia Osuna-López, Tomas Fitzgerald, Joachim Wittbrodt, Ewan Birney","doi":"10.1093/bioadv/vbae107","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Crosses among inbred lines are a fundamental tool for the discovery of genetic loci associated with phenotypes of interest. In organisms for which large reference panels or SNP chips are not available, imputation from low-pass whole-genome sequencing is an effective method for obtaining genotype data from a large number of individuals. To date, a structured analysis of the conditions required for optimal genotype imputation has not been performed.</p><p><strong>Results: </strong>We report a systematic exploration of the effect of several design variables on imputation performance in F2 crosses of inbred medaka lines using the imputation software STITCH. We determined that, depending on the number of samples, imputation performance reaches a plateau when increasing the per-sample sequencing coverage. We also systematically explored the trade-offs between cost, imputation accuracy, and sample numbers. We developed a computational pipeline to streamline the process, enabling other researchers to perform a similar cost-benefit analysis on their population of interest.</p><p><strong>Availability and implementation: </strong>The source code for the pipeline is available at https://github.com/birneylab/stitchimpute. While our pipeline has been developed and tested for an F2 population, the software can also be used to analyse populations with a different structure.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae107"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genotype imputation in F2 crosses of inbred lines.\",\"authors\":\"Saul Pierotti, Bettina Welz, Mireia Osuna-López, Tomas Fitzgerald, Joachim Wittbrodt, Ewan Birney\",\"doi\":\"10.1093/bioadv/vbae107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Crosses among inbred lines are a fundamental tool for the discovery of genetic loci associated with phenotypes of interest. In organisms for which large reference panels or SNP chips are not available, imputation from low-pass whole-genome sequencing is an effective method for obtaining genotype data from a large number of individuals. To date, a structured analysis of the conditions required for optimal genotype imputation has not been performed.</p><p><strong>Results: </strong>We report a systematic exploration of the effect of several design variables on imputation performance in F2 crosses of inbred medaka lines using the imputation software STITCH. We determined that, depending on the number of samples, imputation performance reaches a plateau when increasing the per-sample sequencing coverage. We also systematically explored the trade-offs between cost, imputation accuracy, and sample numbers. We developed a computational pipeline to streamline the process, enabling other researchers to perform a similar cost-benefit analysis on their population of interest.</p><p><strong>Availability and implementation: </strong>The source code for the pipeline is available at https://github.com/birneylab/stitchimpute. While our pipeline has been developed and tested for an F2 population, the software can also be used to analyse populations with a different structure.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae107\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机近交系杂交是发现与相关表型有关的遗传位点的基本工具。在没有大型参考面板或 SNP 芯片的生物体中,低通滤波器全基因组测序的估算是从大量个体中获取基因型数据的有效方法。迄今为止,尚未对最佳基因型归因所需的条件进行结构性分析:结果:我们报告了在近交系青鳉 F2 杂交中,利用归因软件 STITCH 系统地探讨了几个设计变量对归因性能的影响。我们发现,根据样本数量的不同,当提高每个样本的测序覆盖率时,估算性能会达到一个高点。我们还系统地探索了成本、估算准确性和样本数量之间的权衡。我们开发了一个计算管道来简化这一过程,使其他研究人员也能对他们感兴趣的人群进行类似的成本效益分析:该管道的源代码可在 https://github.com/birneylab/stitchimpute 上获取。虽然我们的管道是针对 F2 群体开发和测试的,但该软件也可用于分析不同结构的群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genotype imputation in F2 crosses of inbred lines.

Motivation: Crosses among inbred lines are a fundamental tool for the discovery of genetic loci associated with phenotypes of interest. In organisms for which large reference panels or SNP chips are not available, imputation from low-pass whole-genome sequencing is an effective method for obtaining genotype data from a large number of individuals. To date, a structured analysis of the conditions required for optimal genotype imputation has not been performed.

Results: We report a systematic exploration of the effect of several design variables on imputation performance in F2 crosses of inbred medaka lines using the imputation software STITCH. We determined that, depending on the number of samples, imputation performance reaches a plateau when increasing the per-sample sequencing coverage. We also systematically explored the trade-offs between cost, imputation accuracy, and sample numbers. We developed a computational pipeline to streamline the process, enabling other researchers to perform a similar cost-benefit analysis on their population of interest.

Availability and implementation: The source code for the pipeline is available at https://github.com/birneylab/stitchimpute. While our pipeline has been developed and tested for an F2 population, the software can also be used to analyse populations with a different structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1