基于QTL-seq和RNA-seq的水稻(Oryza sativa L.)芽破期耐碱性候选基因的筛选与分析

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Electronic Journal of Biotechnology Pub Date : 2024-07-27 DOI:10.1016/j.ejbt.2024.07.002
Jiangxu Wang , Jingyang Bian , Linshuai Liu , Shiwei Gao , Qing Liu , Yanjiang Feng , Lili Shan , Junxiang Guo , Guiling Wang , Shichen Sun , Hui Jiang , Lei Chen , Lei Lei , Kai Liu
{"title":"基于QTL-seq和RNA-seq的水稻(Oryza sativa L.)芽破期耐碱性候选基因的筛选与分析","authors":"Jiangxu Wang ,&nbsp;Jingyang Bian ,&nbsp;Linshuai Liu ,&nbsp;Shiwei Gao ,&nbsp;Qing Liu ,&nbsp;Yanjiang Feng ,&nbsp;Lili Shan ,&nbsp;Junxiang Guo ,&nbsp;Guiling Wang ,&nbsp;Shichen Sun ,&nbsp;Hui Jiang ,&nbsp;Lei Chen ,&nbsp;Lei Lei ,&nbsp;Kai Liu","doi":"10.1016/j.ejbt.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Soil salinization is one of the key factors restricting the production of cropland. Once rice is subjected to alkali stress at the bud burst stage, the yield will suffer irreparable serious loss. Compared with salt tolerance, studies on QTL mapping and candidate gene analysis of rice alkali tolerance are limited.</p></div><div><h3>Results</h3><p>In this study, we used the F<sub>2:3</sub> population derived from the alkali-tolerant cultivar LD21 and the alkali-sensitive cultivar WL138 to construct an alkali-tolerant DNA mixing pool, and the BSA (Bulked Segregation Analysis) method was used for re-sequencing. The main QTL <em>qRSLB9</em> controlling the relative shoot length of rice under alkali stress was mapped by QTL-seq. The candidate interval was narrowed to 346.5 kb by regional linkage mapping, which containing 6 DEGs screened through transcriptome sequencing. The qRT-PCR and candidate gene sequencing showed that <em>LOC_Os09g24260</em> was most likely to control relative shoot length (RSL) in rice as a major gene who encodes the WD domain, G-beta repeat domain-containing protein.</p></div><div><h3>Conclusions</h3><p>Based on these results, <em>LOC_Os09g24260</em> was the candidate gene of <em>qRSLB9</em> conferring alkalinity tolerance to rice at the bud burst stage. Our study provides valuable genetic information and materials for breeding new rice varieties with alkalinity tolerance.</p><p><strong>How to cite:</strong> Wang J, Bian J, Liu L, et al. Screening and analysis of candidate genes conferring alkalinity tolerance in rice (<em>Oryza sativa</em> L.) at the bud burst stage based on QTL-seq and RNA-seq. Electron J Biotechnol 2024;71. <span><span>https://doi.org/10.1016/j.ejbt.2024.07.002</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"71 ","pages":"Pages 63-73"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345824000228/pdfft?md5=bdb0e25ad953a411d6b44dec5c3b90c3&pid=1-s2.0-S0717345824000228-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Screening and analysis of candidate genes conferring alkalinity tolerance in rice (Oryza sativa L.) at the bud burst stage based on QTL-seq and RNA-seq\",\"authors\":\"Jiangxu Wang ,&nbsp;Jingyang Bian ,&nbsp;Linshuai Liu ,&nbsp;Shiwei Gao ,&nbsp;Qing Liu ,&nbsp;Yanjiang Feng ,&nbsp;Lili Shan ,&nbsp;Junxiang Guo ,&nbsp;Guiling Wang ,&nbsp;Shichen Sun ,&nbsp;Hui Jiang ,&nbsp;Lei Chen ,&nbsp;Lei Lei ,&nbsp;Kai Liu\",\"doi\":\"10.1016/j.ejbt.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Soil salinization is one of the key factors restricting the production of cropland. Once rice is subjected to alkali stress at the bud burst stage, the yield will suffer irreparable serious loss. Compared with salt tolerance, studies on QTL mapping and candidate gene analysis of rice alkali tolerance are limited.</p></div><div><h3>Results</h3><p>In this study, we used the F<sub>2:3</sub> population derived from the alkali-tolerant cultivar LD21 and the alkali-sensitive cultivar WL138 to construct an alkali-tolerant DNA mixing pool, and the BSA (Bulked Segregation Analysis) method was used for re-sequencing. The main QTL <em>qRSLB9</em> controlling the relative shoot length of rice under alkali stress was mapped by QTL-seq. The candidate interval was narrowed to 346.5 kb by regional linkage mapping, which containing 6 DEGs screened through transcriptome sequencing. The qRT-PCR and candidate gene sequencing showed that <em>LOC_Os09g24260</em> was most likely to control relative shoot length (RSL) in rice as a major gene who encodes the WD domain, G-beta repeat domain-containing protein.</p></div><div><h3>Conclusions</h3><p>Based on these results, <em>LOC_Os09g24260</em> was the candidate gene of <em>qRSLB9</em> conferring alkalinity tolerance to rice at the bud burst stage. Our study provides valuable genetic information and materials for breeding new rice varieties with alkalinity tolerance.</p><p><strong>How to cite:</strong> Wang J, Bian J, Liu L, et al. Screening and analysis of candidate genes conferring alkalinity tolerance in rice (<em>Oryza sativa</em> L.) at the bud burst stage based on QTL-seq and RNA-seq. Electron J Biotechnol 2024;71. <span><span>https://doi.org/10.1016/j.ejbt.2024.07.002</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"71 \",\"pages\":\"Pages 63-73\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0717345824000228/pdfft?md5=bdb0e25ad953a411d6b44dec5c3b90c3&pid=1-s2.0-S0717345824000228-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0717345824000228\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345824000228","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景土壤盐碱化是制约耕地产量的关键因素之一。水稻一旦在现蕾期受到碱胁迫,产量将遭受无法挽回的严重损失。结果本研究利用耐碱栽培品种 LD21 和碱敏感栽培品种 WL138 的 F2:3 群体构建了耐碱 DNA 混合池,并采用 BSA(大量分离分析)方法进行了重测序。通过QTL-seq绘制了控制碱胁迫下水稻相对芽长的主QTL qRSLB9。通过区域连锁图谱将候选区间缩小到 346.5 kb,其中包含通过转录组测序筛选出的 6 个 DEGs。qRT-PCR和候选基因测序结果表明,LOC_Os09g24260作为编码含WD结构域、G-β重复结构域蛋白的主要基因,最有可能控制水稻的相对芽长(RSL)。我们的研究为培育具有耐碱性的水稻新品种提供了宝贵的遗传信息和材料:Wang J, Bian J, Liu L, et al. 基于QTL-seq和RNA-seq的水稻芽破期耐碱候选基因筛选与分析.Electron J Biotechnol 2024;71. https://doi.org/10.1016/j.ejbt.2024.07.002.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening and analysis of candidate genes conferring alkalinity tolerance in rice (Oryza sativa L.) at the bud burst stage based on QTL-seq and RNA-seq

Background

Soil salinization is one of the key factors restricting the production of cropland. Once rice is subjected to alkali stress at the bud burst stage, the yield will suffer irreparable serious loss. Compared with salt tolerance, studies on QTL mapping and candidate gene analysis of rice alkali tolerance are limited.

Results

In this study, we used the F2:3 population derived from the alkali-tolerant cultivar LD21 and the alkali-sensitive cultivar WL138 to construct an alkali-tolerant DNA mixing pool, and the BSA (Bulked Segregation Analysis) method was used for re-sequencing. The main QTL qRSLB9 controlling the relative shoot length of rice under alkali stress was mapped by QTL-seq. The candidate interval was narrowed to 346.5 kb by regional linkage mapping, which containing 6 DEGs screened through transcriptome sequencing. The qRT-PCR and candidate gene sequencing showed that LOC_Os09g24260 was most likely to control relative shoot length (RSL) in rice as a major gene who encodes the WD domain, G-beta repeat domain-containing protein.

Conclusions

Based on these results, LOC_Os09g24260 was the candidate gene of qRSLB9 conferring alkalinity tolerance to rice at the bud burst stage. Our study provides valuable genetic information and materials for breeding new rice varieties with alkalinity tolerance.

How to cite: Wang J, Bian J, Liu L, et al. Screening and analysis of candidate genes conferring alkalinity tolerance in rice (Oryza sativa L.) at the bud burst stage based on QTL-seq and RNA-seq. Electron J Biotechnol 2024;71. https://doi.org/10.1016/j.ejbt.2024.07.002.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Biotechnology
Electronic Journal of Biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
50
审稿时长
2 months
期刊介绍: Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology. The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th). The following areas are covered in the Journal: • Animal Biotechnology • Biofilms • Bioinformatics • Biomedicine • Biopolicies of International Cooperation • Biosafety • Biotechnology Industry • Biotechnology of Human Disorders • Chemical Engineering • Environmental Biotechnology • Food Biotechnology • Marine Biotechnology • Microbial Biotechnology • Molecular Biology and Genetics •Nanobiotechnology • Omics • Plant Biotechnology • Process Biotechnology • Process Chemistry and Technology • Tissue Engineering
期刊最新文献
Evaluation of high-value bioproducts production by marine endophytic fungus Arthrinium sp. FAKSA 10 under solid state fermentation using agro-industrial wastes Antibiotic evaluation of the nanocomposites IONs-MWCNTs-Pc and IONs-GO-Pc encapsulated in the biocompatible hydrogel poly(VCL-co-PEGDA) based on photodynamic effect The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health Acetylcholinesterase inhibition exerted by the extract of Daldinia eschscholtzii, a marine fungus associated with the coral Siderastrea siderea: GC-MS analysis and molecular docking of identified compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1