太阳能光伏发电经济和预测研究数学模型:应用于中国、欧盟、美国、日本和印度,并与全球产量进行比较

IF 4.2 Q2 ENERGY & FUELS Renewable Energy Focus Pub Date : 2024-07-25 DOI:10.1016/j.ref.2024.100607
Soliman Abdalla
{"title":"太阳能光伏发电经济和预测研究数学模型:应用于中国、欧盟、美国、日本和印度,并与全球产量进行比较","authors":"Soliman Abdalla","doi":"10.1016/j.ref.2024.100607","DOIUrl":null,"url":null,"abstract":"<div><p>It is not easy to make precise predictions about solar energy generation in the coming decades. However, it is generally expected to play an increasingly important role in the global energy mix in the near future. There are several trends that suggest solar energy will continue to grow in the coming years meet the global energy needs. Therefore, a mathematical model based on the diffusion of installation sales of solar photovoltaic (S-PV) power in a certain market is presented. The present study begins with some mathematical modifications to the Bass diffusion model (BDM), and applies these modifications to the S-PV worldwide-market and different countries. Calculations using the BDM leads to the saturation of the “market,” which means a saturation of S-PV production, corresponding to the saturation of the S-PV market’s production (national/country production). This leads to precise predictions of S-PV production values at the national levels.</p></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"50 ","pages":"Article 100607"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for economic and prognostic studies of solar photovoltaic power: Application to China, the EU, the USA, Japan and India compared to worldwide production\",\"authors\":\"Soliman Abdalla\",\"doi\":\"10.1016/j.ref.2024.100607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is not easy to make precise predictions about solar energy generation in the coming decades. However, it is generally expected to play an increasingly important role in the global energy mix in the near future. There are several trends that suggest solar energy will continue to grow in the coming years meet the global energy needs. Therefore, a mathematical model based on the diffusion of installation sales of solar photovoltaic (S-PV) power in a certain market is presented. The present study begins with some mathematical modifications to the Bass diffusion model (BDM), and applies these modifications to the S-PV worldwide-market and different countries. Calculations using the BDM leads to the saturation of the “market,” which means a saturation of S-PV production, corresponding to the saturation of the S-PV market’s production (national/country production). This leads to precise predictions of S-PV production values at the national levels.</p></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"50 \",\"pages\":\"Article 100607\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755008424000711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

要准确预测未来几十年的太阳能发电量并不容易。不过,人们普遍预计,在不久的将来,太阳能将在全球能源结构中发挥越来越重要的作用。一些趋势表明,太阳能在未来几年将继续增长,以满足全球能源需求。因此,我们提出了一个基于某一市场太阳能光伏发电安装销售扩散的数学模型。本研究首先对巴斯扩散模型(BDM)进行了一些数学修改,并将这些修改应用于全球太阳能光伏市场和不同国家。使用 BDM 进行计算可得出 "市场 "的饱和度,这意味着 S-PV 产量的饱和度,与 S-PV 市场产量(国家/地区产量)的饱和度相对应。这样就可以精确预测国家层面的太阳能光伏发电产值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mathematical model for economic and prognostic studies of solar photovoltaic power: Application to China, the EU, the USA, Japan and India compared to worldwide production

It is not easy to make precise predictions about solar energy generation in the coming decades. However, it is generally expected to play an increasingly important role in the global energy mix in the near future. There are several trends that suggest solar energy will continue to grow in the coming years meet the global energy needs. Therefore, a mathematical model based on the diffusion of installation sales of solar photovoltaic (S-PV) power in a certain market is presented. The present study begins with some mathematical modifications to the Bass diffusion model (BDM), and applies these modifications to the S-PV worldwide-market and different countries. Calculations using the BDM leads to the saturation of the “market,” which means a saturation of S-PV production, corresponding to the saturation of the S-PV market’s production (national/country production). This leads to precise predictions of S-PV production values at the national levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
期刊最新文献
Optimal control strategy for enhancing energy efficiency of Pelamis wave energy converter: a Simulink-based simulation approach Management and control strategy of multiple frequency powers in multifrequency microgrid Emerging Trends in Active Distribution Network Fault Detection Advanced control strategies for grid-following inverter fault response: Implementation and analysis in MATLAB for protection studies in medium voltage distribution networks Exploring deep learning methods for solar photovoltaic power output forecasting: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1