巩膜光交联的计算建模:从大鼠到迷你猪再到人类。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of The Royal Society Interface Pub Date : 2024-07-01 Epub Date: 2024-07-31 DOI:10.1098/rsif.2024.0111
Amy J Wood-Yang, Brandon G Gerberich, Mark R Prausnitz
{"title":"巩膜光交联的计算建模:从大鼠到迷你猪再到人类。","authors":"Amy J Wood-Yang, Brandon G Gerberich, Mark R Prausnitz","doi":"10.1098/rsif.2024.0111","DOIUrl":null,"url":null,"abstract":"<p><p>Selective scleral crosslinking has been proposed as a novel treatment to increase scleral stiffness to counteract biomechanical changes associated with glaucoma and high myopia. Scleral stiffening has been shown by transpupillary peripapillary scleral photocrosslinking in rats, where the photosensitizer, methylene blue (MB), was injected retrobulbarly and red light initiated crosslinking reactions with collagen. Here, we adapted a computational model previously developed to model this treatment in rat eyes to additionally model MB photocrosslinking in minipigs and humans. Increased tissue length and subsequent diffusion and light penetration limitations were found to be barriers to achieving the same extent of crosslinking as in rats. Per cent inspired O<sub>2</sub>, injected MB concentration and laser fluence were simultaneously varied to overcome these limitations and used to determine optimal combinations of treatment parameters in rats, minipigs and humans. Increasing these three treatment parameters simultaneously resulted in maximum crosslinking, except in rats, where the highest MB concentrations decreased crosslinking. Additionally, the kinetics and diffusion of photocrosslinking reaction intermediates and unproductive side products were modelled across space and time. The model provides a mechanistic understanding of MB photocrosslinking in scleral tissue and a basis for adapting and screening treatment parameters in larger animal models and, eventually, human eyes.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational modelling of scleral photocrosslinking: from rat to minipig to human.\",\"authors\":\"Amy J Wood-Yang, Brandon G Gerberich, Mark R Prausnitz\",\"doi\":\"10.1098/rsif.2024.0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selective scleral crosslinking has been proposed as a novel treatment to increase scleral stiffness to counteract biomechanical changes associated with glaucoma and high myopia. Scleral stiffening has been shown by transpupillary peripapillary scleral photocrosslinking in rats, where the photosensitizer, methylene blue (MB), was injected retrobulbarly and red light initiated crosslinking reactions with collagen. Here, we adapted a computational model previously developed to model this treatment in rat eyes to additionally model MB photocrosslinking in minipigs and humans. Increased tissue length and subsequent diffusion and light penetration limitations were found to be barriers to achieving the same extent of crosslinking as in rats. Per cent inspired O<sub>2</sub>, injected MB concentration and laser fluence were simultaneously varied to overcome these limitations and used to determine optimal combinations of treatment parameters in rats, minipigs and humans. Increasing these three treatment parameters simultaneously resulted in maximum crosslinking, except in rats, where the highest MB concentrations decreased crosslinking. Additionally, the kinetics and diffusion of photocrosslinking reaction intermediates and unproductive side products were modelled across space and time. The model provides a mechanistic understanding of MB photocrosslinking in scleral tissue and a basis for adapting and screening treatment parameters in larger animal models and, eventually, human eyes.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0111\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0111","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

选择性巩膜交联被认为是一种新的治疗方法,可以增加巩膜硬度,从而抵消与青光眼和高度近视相关的生物力学变化。通过在大鼠眼球后方注射光敏剂亚甲基蓝(MB),并用红光引发胶原蛋白的交联反应,经瞳孔周围的巩膜光交联显示了巩膜僵化。在这里,我们将之前开发的用于模拟大鼠眼部这种治疗方法的计算模型进行了改良,进一步模拟了小猪和人类的亚甲基蓝光交联反应。我们发现,组织长度的增加以及随后的扩散和光穿透限制是实现与大鼠相同程度的交联的障碍。为了克服这些限制,我们同时改变了吸入氧气的百分比、注射甲基溴的浓度和激光能量,以确定大鼠、迷你猪和人的最佳治疗参数组合。同时增加这三个处理参数会导致最大程度的交联,但大鼠除外,因为甲基溴浓度最高会降低交联程度。此外,还模拟了光交联反应中间产物和非生产性副产品在空间和时间上的动力学和扩散。该模型提供了对巩膜组织中甲基溴光交联的机理理解,并为在更大的动物模型中以及最终在人眼中调整和筛选治疗参数奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational modelling of scleral photocrosslinking: from rat to minipig to human.

Selective scleral crosslinking has been proposed as a novel treatment to increase scleral stiffness to counteract biomechanical changes associated with glaucoma and high myopia. Scleral stiffening has been shown by transpupillary peripapillary scleral photocrosslinking in rats, where the photosensitizer, methylene blue (MB), was injected retrobulbarly and red light initiated crosslinking reactions with collagen. Here, we adapted a computational model previously developed to model this treatment in rat eyes to additionally model MB photocrosslinking in minipigs and humans. Increased tissue length and subsequent diffusion and light penetration limitations were found to be barriers to achieving the same extent of crosslinking as in rats. Per cent inspired O2, injected MB concentration and laser fluence were simultaneously varied to overcome these limitations and used to determine optimal combinations of treatment parameters in rats, minipigs and humans. Increasing these three treatment parameters simultaneously resulted in maximum crosslinking, except in rats, where the highest MB concentrations decreased crosslinking. Additionally, the kinetics and diffusion of photocrosslinking reaction intermediates and unproductive side products were modelled across space and time. The model provides a mechanistic understanding of MB photocrosslinking in scleral tissue and a basis for adapting and screening treatment parameters in larger animal models and, eventually, human eyes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
期刊最新文献
Decoding burst swimming performance: a scaling perspective on time-to-fatigue. Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue. Geometric constraint of mechanosensing by modification of hydrogel thickness prevents stiffness-induced differentiation in bone marrow stromal cells. Tautology explains evolution without variation and selection. A Comment on: 'An evolutionary process without variation and selection' (2021), by Gabora et al. Drag reduction and locomotory power in dolphins: Gray's paradox revealed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1