算法如何促进自我激进化?使用逆向工程方法审计 TikTok 算法

IF 3 2区 社会学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Social Science Computer Review Pub Date : 2024-07-30 DOI:10.1177/08944393231225547
Donghee Shin, Kulsawasd Jitkajornwanich
{"title":"算法如何促进自我激进化?使用逆向工程方法审计 TikTok 算法","authors":"Donghee Shin, Kulsawasd Jitkajornwanich","doi":"10.1177/08944393231225547","DOIUrl":null,"url":null,"abstract":"Algorithmic radicalization is the idea that algorithms used by social media platforms push people down digital “rabbit holes” by framing personal online activity. Algorithms control what people see and when they see it and learn from their past activities. As such, people gradually and subconsciously adopt the ideas presented to them by the rabbit hole down which they have been pushed. In this study, TikTok’s role in fostering radicalized ideology is examined to offer a critical analysis of the state of radicalism and extremism on platforms. This study conducted an algorithm audit of the role of radicalizing information in social media by examining how TikTok’s algorithms are being used to radicalize, polarize, and spread extremism and societal instability. The results revealed that the pathways through which users access far-right content are manifold and that a large portion of the content can be ascribed to platform recommendations through radicalization pipelines. Algorithms are not simple tools that offer personalized services but rather contributors to radicalism, societal violence, and polarization. Such personalization processes have been instrumental in how artificial intelligence (AI) has been deployed, designed, and used to the detrimental outcomes that it has generated. Thus, the generation and adoption of extreme content on TikTok are, by and large, not only a reflection of user inputs and interactions with the platform but also the platform’s ability to slot users into specific categories and reinforce their ideas.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Algorithms Promote Self-Radicalization: Audit of TikTok’s Algorithm Using a Reverse Engineering Method\",\"authors\":\"Donghee Shin, Kulsawasd Jitkajornwanich\",\"doi\":\"10.1177/08944393231225547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic radicalization is the idea that algorithms used by social media platforms push people down digital “rabbit holes” by framing personal online activity. Algorithms control what people see and when they see it and learn from their past activities. As such, people gradually and subconsciously adopt the ideas presented to them by the rabbit hole down which they have been pushed. In this study, TikTok’s role in fostering radicalized ideology is examined to offer a critical analysis of the state of radicalism and extremism on platforms. This study conducted an algorithm audit of the role of radicalizing information in social media by examining how TikTok’s algorithms are being used to radicalize, polarize, and spread extremism and societal instability. The results revealed that the pathways through which users access far-right content are manifold and that a large portion of the content can be ascribed to platform recommendations through radicalization pipelines. Algorithms are not simple tools that offer personalized services but rather contributors to radicalism, societal violence, and polarization. Such personalization processes have been instrumental in how artificial intelligence (AI) has been deployed, designed, and used to the detrimental outcomes that it has generated. Thus, the generation and adoption of extreme content on TikTok are, by and large, not only a reflection of user inputs and interactions with the platform but also the platform’s ability to slot users into specific categories and reinforce their ideas.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393231225547\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393231225547","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

算法激进化是指社交媒体平台使用的算法通过框定个人在线活动,将人们推向数字 "兔子洞"。算法控制着人们看到什么、何时看到,并从他们过去的活动中学习。因此,人们会逐渐地、下意识地接受被推下兔子洞的人向他们展示的想法。在本研究中,我们研究了 TikTok 在培养激进意识形态方面的作用,对平台上的激进主义和极端主义状况进行了批判性分析。本研究通过研究 TikTok 的算法如何被用于激进化、分化和传播极端主义和社会不稳定,对激进化信息在社交媒体中的作用进行了算法审计。研究结果表明,用户获取极右内容的途径是多方面的,其中很大一部分内容可以通过激进化管道归因于平台推荐。算法不是提供个性化服务的简单工具,而是激进主义、社会暴力和两极分化的助推器。在人工智能(AI)的部署、设计和使用过程中,这种个性化过程发挥了重要作用,并产生了有害的结果。因此,TikTok 上极端内容的产生和采用在很大程度上不仅反映了用户对平台的投入和互动,也反映了平台将用户归入特定类别并强化其观念的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Algorithms Promote Self-Radicalization: Audit of TikTok’s Algorithm Using a Reverse Engineering Method
Algorithmic radicalization is the idea that algorithms used by social media platforms push people down digital “rabbit holes” by framing personal online activity. Algorithms control what people see and when they see it and learn from their past activities. As such, people gradually and subconsciously adopt the ideas presented to them by the rabbit hole down which they have been pushed. In this study, TikTok’s role in fostering radicalized ideology is examined to offer a critical analysis of the state of radicalism and extremism on platforms. This study conducted an algorithm audit of the role of radicalizing information in social media by examining how TikTok’s algorithms are being used to radicalize, polarize, and spread extremism and societal instability. The results revealed that the pathways through which users access far-right content are manifold and that a large portion of the content can be ascribed to platform recommendations through radicalization pipelines. Algorithms are not simple tools that offer personalized services but rather contributors to radicalism, societal violence, and polarization. Such personalization processes have been instrumental in how artificial intelligence (AI) has been deployed, designed, and used to the detrimental outcomes that it has generated. Thus, the generation and adoption of extreme content on TikTok are, by and large, not only a reflection of user inputs and interactions with the platform but also the platform’s ability to slot users into specific categories and reinforce their ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Science Computer Review
Social Science Computer Review 社会科学-计算机:跨学科应用
CiteScore
9.00
自引率
4.90%
发文量
95
审稿时长
>12 weeks
期刊介绍: Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.
期刊最新文献
Has ChatGPT Disrupted the Education Sector in the U.S.? The Moderating Role of Self-Esteem in the Relationship Between Social Media Use and Life Satisfaction Among Older Adults Feminist Identity and Online Activism in Four Countries From 2019 to 2023 Can AI Lie? Chabot Technologies, the Subject, and the Importance of Lying Improving the Quality of Individual-Level Web Tracking: Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1