非粘性悬浮液流的堵塞问题

IF 25.4 1区 工程技术 Q1 MECHANICS Annual Review of Fluid Mechanics Pub Date : 2024-07-31 DOI:10.1146/annurev-fluid-030124-112742
Alvaro Marin, Mathieu Souzy
{"title":"非粘性悬浮液流的堵塞问题","authors":"Alvaro Marin, Mathieu Souzy","doi":"10.1146/annurev-fluid-030124-112742","DOIUrl":null,"url":null,"abstract":"When flowing through narrow channels or constrictions, many-body systems exhibit various flowing patterns, yet they can also get stuck. In many of these systems, the flowing elements remain as individuals (they do not aggregate or merge), sharing strong analogies among each other. This is the case for systems as contrasting as grains in a silo and pedestrians passing through tight spaces. Interestingly, when these entities flow within a fluid medium, numerous similarities persist. However, the fluid dynamics aspects of such clogging events, such as interstitial flow, liquid pressure, and hydrodynamic interactions, has only recently begun to be explored. In this review, we describe parallels with dry granular clogging and extensively analyze phenomena emerging when particles coexist with fluid in the system. We discuss the influence of diverse flow drive, particle propulsion mechanisms, and particle characteristics, and we conclude with examples from nature.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clogging of Noncohesive Suspension Flows\",\"authors\":\"Alvaro Marin, Mathieu Souzy\",\"doi\":\"10.1146/annurev-fluid-030124-112742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When flowing through narrow channels or constrictions, many-body systems exhibit various flowing patterns, yet they can also get stuck. In many of these systems, the flowing elements remain as individuals (they do not aggregate or merge), sharing strong analogies among each other. This is the case for systems as contrasting as grains in a silo and pedestrians passing through tight spaces. Interestingly, when these entities flow within a fluid medium, numerous similarities persist. However, the fluid dynamics aspects of such clogging events, such as interstitial flow, liquid pressure, and hydrodynamic interactions, has only recently begun to be explored. In this review, we describe parallels with dry granular clogging and extensively analyze phenomena emerging when particles coexist with fluid in the system. We discuss the influence of diverse flow drive, particle propulsion mechanisms, and particle characteristics, and we conclude with examples from nature.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-030124-112742\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-030124-112742","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

多体系统在狭窄的通道或狭窄的空间中流动时,会表现出各种流动模式,但也可能被卡住。在许多这些系统中,流动元素仍然是独立的(它们没有聚合或合并),相互之间有很强的类比性。筒仓中的谷物和穿过狭小空间的行人等对比强烈的系统就是这种情况。有趣的是,当这些实体在流体介质中流动时,许多相似之处依然存在。然而,人们最近才开始探索此类堵塞事件的流体动力学方面,如间隙流、液体压力和流体动力学相互作用。在这篇综述中,我们描述了干颗粒堵塞的相似之处,并广泛分析了颗粒与流体在系统中共存时出现的现象。我们讨论了各种流动驱动力、颗粒推进机制和颗粒特性的影响,并以自然界中的实例作为总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clogging of Noncohesive Suspension Flows
When flowing through narrow channels or constrictions, many-body systems exhibit various flowing patterns, yet they can also get stuck. In many of these systems, the flowing elements remain as individuals (they do not aggregate or merge), sharing strong analogies among each other. This is the case for systems as contrasting as grains in a silo and pedestrians passing through tight spaces. Interestingly, when these entities flow within a fluid medium, numerous similarities persist. However, the fluid dynamics aspects of such clogging events, such as interstitial flow, liquid pressure, and hydrodynamic interactions, has only recently begun to be explored. In this review, we describe parallels with dry granular clogging and extensively analyze phenomena emerging when particles coexist with fluid in the system. We discuss the influence of diverse flow drive, particle propulsion mechanisms, and particle characteristics, and we conclude with examples from nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
期刊最新文献
Physicochemical Hydrodynamics of Particle Diffusiophoresis Driven by Chemical Gradients Freezing and Capillarity Instabilities and Mixing in Inertial Confinement Fusion Fluid Mechanics of the Dead Sea Multiscale Modeling of Respiratory Transport Phenomena and Intersubject Variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1