Prashik Malhari Ramteke, Erukala Kalyan Kumar, Hukum Chand Dewangan, B. K. Patle, Subrata Kumar Panda
{"title":"几何非线性多孔梯度曲面结构的热力学变形响应的理论预测和实验验证","authors":"Prashik Malhari Ramteke, Erukala Kalyan Kumar, Hukum Chand Dewangan, B. K. Patle, Subrata Kumar Panda","doi":"10.1007/s10999-024-09725-5","DOIUrl":null,"url":null,"abstract":"<p>The nonlinear flexural/stress (static/dynamic) behaviour of functionally graded (FG) curved panels is analyzed in the current article, considering thermomechanical loading. The finite element (FE) based mathematical model is developed utilizing higher-order shear deformation theory (HSDT) and Green–Lagrange strain tensor (GLST) (to introduce the geometrical nonlinearity). Various types of material grading types (GDT), i.e., power-law (GDT-I), sigmoid (GDT-II) and exponential (GDT-III), and porosity variation patterns, i.e., even (PRT-I) and uneven (PRT-II) are delved in the present work. Also, temperature-dependent (TMPD) and temperature-independent (TMID) properties are engrained in estimating accurate static and dynamic responses. A direct iterative technique is adopted to compute the nonlinear structural deflection values under variable loading (static and dynamic). The numerical solution consistency of the established model has been verified via convergence. Furthermore, the correctness is proven using numerical and experimental validations. The natural-fibre (luffa) reinforced layer-wise graded panels have also been fabricated for experimental validation. The study includes the effect of temperature on the panel micro level and the variations between constituents (fibre and epoxy), which were checked through microstructural imaging. The analysis is extended further to study the influence of variable parameters on the flexural/stress data of the FGM panel.</p>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"25 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure\",\"authors\":\"Prashik Malhari Ramteke, Erukala Kalyan Kumar, Hukum Chand Dewangan, B. K. Patle, Subrata Kumar Panda\",\"doi\":\"10.1007/s10999-024-09725-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nonlinear flexural/stress (static/dynamic) behaviour of functionally graded (FG) curved panels is analyzed in the current article, considering thermomechanical loading. The finite element (FE) based mathematical model is developed utilizing higher-order shear deformation theory (HSDT) and Green–Lagrange strain tensor (GLST) (to introduce the geometrical nonlinearity). Various types of material grading types (GDT), i.e., power-law (GDT-I), sigmoid (GDT-II) and exponential (GDT-III), and porosity variation patterns, i.e., even (PRT-I) and uneven (PRT-II) are delved in the present work. Also, temperature-dependent (TMPD) and temperature-independent (TMID) properties are engrained in estimating accurate static and dynamic responses. A direct iterative technique is adopted to compute the nonlinear structural deflection values under variable loading (static and dynamic). The numerical solution consistency of the established model has been verified via convergence. Furthermore, the correctness is proven using numerical and experimental validations. The natural-fibre (luffa) reinforced layer-wise graded panels have also been fabricated for experimental validation. The study includes the effect of temperature on the panel micro level and the variations between constituents (fibre and epoxy), which were checked through microstructural imaging. The analysis is extended further to study the influence of variable parameters on the flexural/stress data of the FGM panel.</p>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10999-024-09725-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10999-024-09725-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure
The nonlinear flexural/stress (static/dynamic) behaviour of functionally graded (FG) curved panels is analyzed in the current article, considering thermomechanical loading. The finite element (FE) based mathematical model is developed utilizing higher-order shear deformation theory (HSDT) and Green–Lagrange strain tensor (GLST) (to introduce the geometrical nonlinearity). Various types of material grading types (GDT), i.e., power-law (GDT-I), sigmoid (GDT-II) and exponential (GDT-III), and porosity variation patterns, i.e., even (PRT-I) and uneven (PRT-II) are delved in the present work. Also, temperature-dependent (TMPD) and temperature-independent (TMID) properties are engrained in estimating accurate static and dynamic responses. A direct iterative technique is adopted to compute the nonlinear structural deflection values under variable loading (static and dynamic). The numerical solution consistency of the established model has been verified via convergence. Furthermore, the correctness is proven using numerical and experimental validations. The natural-fibre (luffa) reinforced layer-wise graded panels have also been fabricated for experimental validation. The study includes the effect of temperature on the panel micro level and the variations between constituents (fibre and epoxy), which were checked through microstructural imaging. The analysis is extended further to study the influence of variable parameters on the flexural/stress data of the FGM panel.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.