论利用神经网络控制加热器的方法

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY Optoelectronics Instrumentation and Data Processing Pub Date : 2024-07-29 DOI:10.3103/s8756699024700328
S. S. Abdurakipov, E. B. Butakov
{"title":"论利用神经网络控制加热器的方法","authors":"S. S. Abdurakipov, E. B. Butakov","doi":"10.3103/s8756699024700328","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The possibility of using a long short-term memory (LSTM) neural network has been studied to simulate the operation of a PID controller. A programmable PID controller has been realized to control a heater with a temperature sensor on the basis of an Arduino microcontroller. A LSTM model trained on the controller data has been developed. It is shown that the neural network model accurately reproduces the operation of the controller and can completely replace it under the condition of a much greater but sufficient data processing time. The applicability of this model as a detector of abnormal operation of the PID controller is shown.</p>","PeriodicalId":44919,"journal":{"name":"Optoelectronics Instrumentation and Data Processing","volume":"42 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Method of Controlling Heater by Using Neural Networks\",\"authors\":\"S. S. Abdurakipov, E. B. Butakov\",\"doi\":\"10.3103/s8756699024700328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The possibility of using a long short-term memory (LSTM) neural network has been studied to simulate the operation of a PID controller. A programmable PID controller has been realized to control a heater with a temperature sensor on the basis of an Arduino microcontroller. A LSTM model trained on the controller data has been developed. It is shown that the neural network model accurately reproduces the operation of the controller and can completely replace it under the condition of a much greater but sufficient data processing time. The applicability of this model as a detector of abnormal operation of the PID controller is shown.</p>\",\"PeriodicalId\":44919,\"journal\":{\"name\":\"Optoelectronics Instrumentation and Data Processing\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optoelectronics Instrumentation and Data Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s8756699024700328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronics Instrumentation and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s8756699024700328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了使用长短期记忆(LSTM)神经网络模拟 PID 控制器运行的可能性。在 Arduino 微控制器的基础上实现了一个可编程 PID 控制器,用于控制带有温度传感器的加热器。基于控制器数据训练的 LSTM 模型已经开发出来。结果表明,该神经网络模型准确地再现了控制器的运行,并能在数据处理时间更长但足够的条件下完全取代控制器。该模型可用作 PID 控制器异常运行的检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On a Method of Controlling Heater by Using Neural Networks

Abstract

The possibility of using a long short-term memory (LSTM) neural network has been studied to simulate the operation of a PID controller. A programmable PID controller has been realized to control a heater with a temperature sensor on the basis of an Arduino microcontroller. A LSTM model trained on the controller data has been developed. It is shown that the neural network model accurately reproduces the operation of the controller and can completely replace it under the condition of a much greater but sufficient data processing time. The applicability of this model as a detector of abnormal operation of the PID controller is shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
16
期刊介绍: The scope of Optoelectronics, Instrumentation and Data Processing encompasses, but is not restricted to, the following areas: analysis and synthesis of signals and images; artificial intelligence methods; automated measurement systems; physicotechnical foundations of micro- and optoelectronics; optical information technologies; systems and components; modelling in physicotechnical research; laser physics applications; computer networks and data transmission systems. The journal publishes original papers, reviews, and short communications in order to provide the widest possible coverage of latest research and development in its chosen field.
期刊最新文献
Event-Discrete Traffic Control Models Principle of Calibrating a Magnetometric Sensor by the Precise Measurement of Change in Its Spatial Position in a Constant Magnetic Field The Required Number of Elements for a Ring Antenna Array Measurement of Distances between Objects by a Series of Images Obtained from Several Shooting Points with a Small Angle Camera Synthesis and Optimization of a Stochastic Algorithm for Image Registration Using Shannon’s Maximum Mutual Information Criterion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1