{"title":"电沉积 CoSe 电催化剂溶解对酸性环境中氢气进化反应影响的研究","authors":"Soyeon Lim, Taeho Lim","doi":"10.1007/s12678-024-00881-y","DOIUrl":null,"url":null,"abstract":"<div><p>CoSe is one of the chalcogenides attracting much attention due to its excellent hydrogen evolution reaction (HER) activity and low price. However, CoSe prepared by electrodeposition generally shows lower HER activity and stability under acidic conditions than those prepared by other methods. In this study, it was assumed that the cause of the low HER performance of electrodeposited CoSe is mainly due to the dissolution of Co and Se, which do not form a stable alloy, and annealing of electrodeposited CoSe was introduced to demonstrate this. We compared the HER activity and stability of non-annealed and annealed CoSe in 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte and investigated the dissolution behaviors of the two catalysts during HER. As a result, it was found that Co and Se, which did not form a stoichiometric CoSe<sub>2</sub> alloy, were found to be vulnerable in acidic conditions. The annealing induced additional CoSe<sub>2</sub> formation, improving the HER activity and stability of electrodeposited CoSe. The annealed CoSe exhibited an overpotential of 175 mV at 10 mA cm<sup>−2</sup>, 27 mV lower than that of non-annealed one, and was stable for 48 h at 10 mA cm<sup>−2</sup>.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 5","pages":"401 - 411"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Effect of Electrodeposited CoSe Electrocatalyst Dissolution on Hydrogen Evolution Reaction in Acidic Environments\",\"authors\":\"Soyeon Lim, Taeho Lim\",\"doi\":\"10.1007/s12678-024-00881-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CoSe is one of the chalcogenides attracting much attention due to its excellent hydrogen evolution reaction (HER) activity and low price. However, CoSe prepared by electrodeposition generally shows lower HER activity and stability under acidic conditions than those prepared by other methods. In this study, it was assumed that the cause of the low HER performance of electrodeposited CoSe is mainly due to the dissolution of Co and Se, which do not form a stable alloy, and annealing of electrodeposited CoSe was introduced to demonstrate this. We compared the HER activity and stability of non-annealed and annealed CoSe in 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte and investigated the dissolution behaviors of the two catalysts during HER. As a result, it was found that Co and Se, which did not form a stoichiometric CoSe<sub>2</sub> alloy, were found to be vulnerable in acidic conditions. The annealing induced additional CoSe<sub>2</sub> formation, improving the HER activity and stability of electrodeposited CoSe. The annealed CoSe exhibited an overpotential of 175 mV at 10 mA cm<sup>−2</sup>, 27 mV lower than that of non-annealed one, and was stable for 48 h at 10 mA cm<sup>−2</sup>.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 5\",\"pages\":\"401 - 411\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00881-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00881-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
CoSe 是一种千氧化物,因其出色的氢进化反应(HER)活性和低廉的价格而备受关注。然而,与其他方法相比,电沉积法制备的 CoSe 在酸性条件下的氢进化活性和稳定性通常较低。本研究认为,电沉积 CoSe 的 HER 性能较低的主要原因是 Co 和 Se 的溶解,没有形成稳定的合金,并引入电沉积 CoSe 的退火来证明这一点。我们比较了未退火和退火 CoSe 在 0.5 M H2SO4 电解液中的 HER 活性和稳定性,并研究了两种催化剂在 HER 过程中的溶解行为。结果发现,没有形成化学计量 CoSe2 合金的 Co 和 Se 在酸性条件下很脆弱。退火诱导形成额外的 CoSe2,提高了电沉积 CoSe 的 HER 活性和稳定性。退火后的 CoSe 在 10 mA cm-2 条件下的过电位为 175 mV,比未退火的低 27 mV,并且在 10 mA cm-2 条件下可稳定 48 小时。
A Study on Effect of Electrodeposited CoSe Electrocatalyst Dissolution on Hydrogen Evolution Reaction in Acidic Environments
CoSe is one of the chalcogenides attracting much attention due to its excellent hydrogen evolution reaction (HER) activity and low price. However, CoSe prepared by electrodeposition generally shows lower HER activity and stability under acidic conditions than those prepared by other methods. In this study, it was assumed that the cause of the low HER performance of electrodeposited CoSe is mainly due to the dissolution of Co and Se, which do not form a stable alloy, and annealing of electrodeposited CoSe was introduced to demonstrate this. We compared the HER activity and stability of non-annealed and annealed CoSe in 0.5 M H2SO4 electrolyte and investigated the dissolution behaviors of the two catalysts during HER. As a result, it was found that Co and Se, which did not form a stoichiometric CoSe2 alloy, were found to be vulnerable in acidic conditions. The annealing induced additional CoSe2 formation, improving the HER activity and stability of electrodeposited CoSe. The annealed CoSe exhibited an overpotential of 175 mV at 10 mA cm−2, 27 mV lower than that of non-annealed one, and was stable for 48 h at 10 mA cm−2.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.