利用硅锰和氟石膏废料制备发泡陶瓷并确定其特性

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Ceramic Technology Pub Date : 2024-07-29 DOI:10.1111/ijac.14850
Xiongwei Dong, Fenglan Han, Ning Li, Fuyuan Dong, Haipeng Liu, Yu Neng, Maohui Li
{"title":"利用硅锰和氟石膏废料制备发泡陶瓷并确定其特性","authors":"Xiongwei Dong, Fenglan Han, Ning Li, Fuyuan Dong, Haipeng Liu, Yu Neng, Maohui Li","doi":"10.1111/ijac.14850","DOIUrl":null,"url":null,"abstract":"High‐strength foamed ceramics were synthesized employing silicon‐manganese slag (SM) and fluorgypsum (FG) as raw materials, with SiC serving as the foaming agent. Investigations into the influence of firing temperature and FG content on the phase structure, microstructure, and physical properties of foam ceramics were conducted. Characterization of the samples was performed through X‐ray diffraction and scanning electron microscopy. Results indicate that an increase in FG content lowers the matrix melting point, promotes crystal growth, enhances compressive strength, and forms a uniform pore structure. At an FG content of 11%, ceramics prepared at a firing temperature of 1130°C exhibit a density of 0.56 g/cm<jats:sup>3</jats:sup>, porosity of 78.45%, and compressive strength of 3.05 MPa. This study explores the use of FG as a cost‐effective alternative to borax, demonstrating a sustainable approach for foam ceramics preparation using silicomanganese slag and FG synergy.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of foamed ceramics from silicomanganese and fluorgypsum waste\",\"authors\":\"Xiongwei Dong, Fenglan Han, Ning Li, Fuyuan Dong, Haipeng Liu, Yu Neng, Maohui Li\",\"doi\":\"10.1111/ijac.14850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐strength foamed ceramics were synthesized employing silicon‐manganese slag (SM) and fluorgypsum (FG) as raw materials, with SiC serving as the foaming agent. Investigations into the influence of firing temperature and FG content on the phase structure, microstructure, and physical properties of foam ceramics were conducted. Characterization of the samples was performed through X‐ray diffraction and scanning electron microscopy. Results indicate that an increase in FG content lowers the matrix melting point, promotes crystal growth, enhances compressive strength, and forms a uniform pore structure. At an FG content of 11%, ceramics prepared at a firing temperature of 1130°C exhibit a density of 0.56 g/cm<jats:sup>3</jats:sup>, porosity of 78.45%, and compressive strength of 3.05 MPa. This study explores the use of FG as a cost‐effective alternative to borax, demonstrating a sustainable approach for foam ceramics preparation using silicomanganese slag and FG synergy.\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijac.14850\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14850","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

以硅锰渣 (SM) 和氟石膏 (FG) 为原料,以 SiC 为发泡剂,合成了高强度泡沫陶瓷。研究了焙烧温度和 FG 含量对泡沫陶瓷的相结构、微观结构和物理性能的影响。通过 X 射线衍射和扫描电子显微镜对样品进行了表征。结果表明,增加 FG 含量可降低基体熔点,促进晶体生长,提高抗压强度,并形成均匀的孔隙结构。当 FG 含量为 11% 时,在 1130°C 烧制温度下制备的陶瓷密度为 0.56 g/cm3,孔隙率为 78.45%,抗压强度为 3.05 MPa。这项研究探讨了如何使用 FG 作为具有成本效益的硼砂替代品,展示了一种利用硅锰渣和 FG 协同作用制备泡沫陶瓷的可持续方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and characterization of foamed ceramics from silicomanganese and fluorgypsum waste
High‐strength foamed ceramics were synthesized employing silicon‐manganese slag (SM) and fluorgypsum (FG) as raw materials, with SiC serving as the foaming agent. Investigations into the influence of firing temperature and FG content on the phase structure, microstructure, and physical properties of foam ceramics were conducted. Characterization of the samples was performed through X‐ray diffraction and scanning electron microscopy. Results indicate that an increase in FG content lowers the matrix melting point, promotes crystal growth, enhances compressive strength, and forms a uniform pore structure. At an FG content of 11%, ceramics prepared at a firing temperature of 1130°C exhibit a density of 0.56 g/cm3, porosity of 78.45%, and compressive strength of 3.05 MPa. This study explores the use of FG as a cost‐effective alternative to borax, demonstrating a sustainable approach for foam ceramics preparation using silicomanganese slag and FG synergy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
期刊最新文献
Contents The crack‐healing behavior and oxidation resistance of Al2O3–ZrO2–SiB6 ceramic at 600–1200°C Fabrication and characterization of silicon carbide ceramic filtration media via recycling of waste red mud Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration The effect of MnO2 additive on the microstructure and mechanical properties of magnesium aluminate spinel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1