Minsol Choi, Jae Kwang Kim, Jiwon Yoon, Jinsu Lim, Kihyun Kim, Bokyeong Kim, Chang Ha Park, Ramaraj Sathasivam, Soon-Jae Kwon, Sang Un Park
{"title":"不同发育阶段木兰花食用花代谢物变化的鉴定和生物活性的评估","authors":"Minsol Choi, Jae Kwang Kim, Jiwon Yoon, Jinsu Lim, Kihyun Kim, Bokyeong Kim, Chang Ha Park, Ramaraj Sathasivam, Soon-Jae Kwon, Sang Un Park","doi":"10.1186/s40538-024-00625-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Magnolia kobus</i> belongs to the Magnoliaceae family and the genus Magnolia. The flowers are widely used in herbal tea and dietary supplements. It is effectively used in traditional medicines and its chemical constituents have various biological activities, such as anti-obesity, antioxidant, anticancer, anti-inflammatory, and anti-hyperlipidaemic activities. The flower developmental process of <i>M. kobus</i> involves a complex regulatory network and is intensively related to the quality and relative composition of primary and secondary metabolites of the flower. Hence, the identification of metabolic changes during different developmental stages of the flower was important for enhancing organoleptic and nutritional characteristics. To our knowledge, to date, none of the studies has investigated the relationship between metabolic changes (primary and secondary metabolites) during different developmental stages of the <i>M. kobus</i> flower.</p><h3>Results</h3><p>This study investigated metabolic changes in 47 hydrophilic and 13 lipophilic compounds and biological activities in <i>Magnolia kobus</i> flowers during four developmental stages. Metabolites were identified using HPLC, GC–qMS, and GC–TOFMS. Throughout flower development, metabolite accumulation showed significant differences based on metabolomics approaches. The dynamic changes of 21 differential metabolites occurred between the young and mature stages. Flower buds exhibited high levels of phenylpropanoids and phytosterols. The total phenolic and flavonoid contents were most abundant in the buds and decreased from the bud to the old stages. Flower bud extracts showed the most powerful effects in three antioxidant assays and antibacterial effects against 10 pathogenic bacterial strains.</p><h3>Conclusions</h3><p>These findings emphasise the value of <i>M. kobus</i> flower buds as an edible natural source and provide valuable insight into the metabolic changes that occur in <i>M. kobus</i> flowers during development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00625-6","citationCount":"0","resultStr":"{\"title\":\"Identification of metabolite changes and evaluation of biological activities in edible flowers of Magnolia kobus at different developmental stages\",\"authors\":\"Minsol Choi, Jae Kwang Kim, Jiwon Yoon, Jinsu Lim, Kihyun Kim, Bokyeong Kim, Chang Ha Park, Ramaraj Sathasivam, Soon-Jae Kwon, Sang Un Park\",\"doi\":\"10.1186/s40538-024-00625-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><i>Magnolia kobus</i> belongs to the Magnoliaceae family and the genus Magnolia. The flowers are widely used in herbal tea and dietary supplements. It is effectively used in traditional medicines and its chemical constituents have various biological activities, such as anti-obesity, antioxidant, anticancer, anti-inflammatory, and anti-hyperlipidaemic activities. The flower developmental process of <i>M. kobus</i> involves a complex regulatory network and is intensively related to the quality and relative composition of primary and secondary metabolites of the flower. Hence, the identification of metabolic changes during different developmental stages of the flower was important for enhancing organoleptic and nutritional characteristics. To our knowledge, to date, none of the studies has investigated the relationship between metabolic changes (primary and secondary metabolites) during different developmental stages of the <i>M. kobus</i> flower.</p><h3>Results</h3><p>This study investigated metabolic changes in 47 hydrophilic and 13 lipophilic compounds and biological activities in <i>Magnolia kobus</i> flowers during four developmental stages. Metabolites were identified using HPLC, GC–qMS, and GC–TOFMS. Throughout flower development, metabolite accumulation showed significant differences based on metabolomics approaches. The dynamic changes of 21 differential metabolites occurred between the young and mature stages. Flower buds exhibited high levels of phenylpropanoids and phytosterols. The total phenolic and flavonoid contents were most abundant in the buds and decreased from the bud to the old stages. Flower bud extracts showed the most powerful effects in three antioxidant assays and antibacterial effects against 10 pathogenic bacterial strains.</p><h3>Conclusions</h3><p>These findings emphasise the value of <i>M. kobus</i> flower buds as an edible natural source and provide valuable insight into the metabolic changes that occur in <i>M. kobus</i> flowers during development.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00625-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00625-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00625-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of metabolite changes and evaluation of biological activities in edible flowers of Magnolia kobus at different developmental stages
Background
Magnolia kobus belongs to the Magnoliaceae family and the genus Magnolia. The flowers are widely used in herbal tea and dietary supplements. It is effectively used in traditional medicines and its chemical constituents have various biological activities, such as anti-obesity, antioxidant, anticancer, anti-inflammatory, and anti-hyperlipidaemic activities. The flower developmental process of M. kobus involves a complex regulatory network and is intensively related to the quality and relative composition of primary and secondary metabolites of the flower. Hence, the identification of metabolic changes during different developmental stages of the flower was important for enhancing organoleptic and nutritional characteristics. To our knowledge, to date, none of the studies has investigated the relationship between metabolic changes (primary and secondary metabolites) during different developmental stages of the M. kobus flower.
Results
This study investigated metabolic changes in 47 hydrophilic and 13 lipophilic compounds and biological activities in Magnolia kobus flowers during four developmental stages. Metabolites were identified using HPLC, GC–qMS, and GC–TOFMS. Throughout flower development, metabolite accumulation showed significant differences based on metabolomics approaches. The dynamic changes of 21 differential metabolites occurred between the young and mature stages. Flower buds exhibited high levels of phenylpropanoids and phytosterols. The total phenolic and flavonoid contents were most abundant in the buds and decreased from the bud to the old stages. Flower bud extracts showed the most powerful effects in three antioxidant assays and antibacterial effects against 10 pathogenic bacterial strains.
Conclusions
These findings emphasise the value of M. kobus flower buds as an edible natural source and provide valuable insight into the metabolic changes that occur in M. kobus flowers during development.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.