溶液基原子层沉积过程中硫醇官能化 SAM 上 SnS2 的成核行为

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-07-31 DOI:10.1002/admi.202300990
Klaus Götz, Annemarie Prihoda, Chen Shen, Martin Dierner, Johannes Dallmann, Saskia Prusch, Dirk Zahn, Erdmann Spiecker, Tobias Unruh
{"title":"溶液基原子层沉积过程中硫醇官能化 SAM 上 SnS2 的成核行为","authors":"Klaus Götz,&nbsp;Annemarie Prihoda,&nbsp;Chen Shen,&nbsp;Martin Dierner,&nbsp;Johannes Dallmann,&nbsp;Saskia Prusch,&nbsp;Dirk Zahn,&nbsp;Erdmann Spiecker,&nbsp;Tobias Unruh","doi":"10.1002/admi.202300990","DOIUrl":null,"url":null,"abstract":"<p>Solution-based atomic layer deposition (sALD) is an emerging technique that transfers the principle of traditional atomic layer deposition (ALD) from the gas phase into a wet chemical environment. This new preparation technique has new and unique properties and requirements. A large number of new surfaces and reactants are available to produce active 2D materials.</p><p>In this work a reproducible procedure to coat silicon wafers with a densely packed monolayer of (3-Mercaptopropyl)trimethoxysilane (MPTMS) molecules is presented. These highly functionalized surfaces can be used to seed the nucleation of SnS<sub>2</sub> in a solution-based ALD procedure. A coating routine for the production of SnS<sub>2</sub> is adapted from ALD to sALD and insight into the nucleation behavior of the reactands is given. X-ray reflectometry (XRR) is used to resolve the nucleation process of SnS<sub>2</sub> on an MPTMS self assembled monolayer (SAM) during the first three cycles of an sALD procedure. The comparison of ex situ XRR, in situ XRR, grazing incidence wide-angle X-ray scattering (GIWAXS), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX) measurements, and density functional theory (DFT) calculations find that SnS<sub>2</sub> first forms a closed layer and then continues to grow in islands on thiol functionalized silane SAMs. Subsequent coating cycles will continue the growth of the islands laterally and in height.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 26","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202300990","citationCount":"0","resultStr":"{\"title\":\"Nucleation Behavior of SnS2 on Thiol Functionalized SAMs During Solution-Based Atomic Layer Deposition\",\"authors\":\"Klaus Götz,&nbsp;Annemarie Prihoda,&nbsp;Chen Shen,&nbsp;Martin Dierner,&nbsp;Johannes Dallmann,&nbsp;Saskia Prusch,&nbsp;Dirk Zahn,&nbsp;Erdmann Spiecker,&nbsp;Tobias Unruh\",\"doi\":\"10.1002/admi.202300990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solution-based atomic layer deposition (sALD) is an emerging technique that transfers the principle of traditional atomic layer deposition (ALD) from the gas phase into a wet chemical environment. This new preparation technique has new and unique properties and requirements. A large number of new surfaces and reactants are available to produce active 2D materials.</p><p>In this work a reproducible procedure to coat silicon wafers with a densely packed monolayer of (3-Mercaptopropyl)trimethoxysilane (MPTMS) molecules is presented. These highly functionalized surfaces can be used to seed the nucleation of SnS<sub>2</sub> in a solution-based ALD procedure. A coating routine for the production of SnS<sub>2</sub> is adapted from ALD to sALD and insight into the nucleation behavior of the reactands is given. X-ray reflectometry (XRR) is used to resolve the nucleation process of SnS<sub>2</sub> on an MPTMS self assembled monolayer (SAM) during the first three cycles of an sALD procedure. The comparison of ex situ XRR, in situ XRR, grazing incidence wide-angle X-ray scattering (GIWAXS), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX) measurements, and density functional theory (DFT) calculations find that SnS<sub>2</sub> first forms a closed layer and then continues to grow in islands on thiol functionalized silane SAMs. Subsequent coating cycles will continue the growth of the islands laterally and in height.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 26\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202300990\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202300990\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202300990","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于溶液的原子层沉积(sALD)是一种新兴技术,它将传统原子层沉积(ALD)的原理从气相转移到湿化学环境中。这种新的制备技术具有新的独特性质和要求。大量新的表面和反应物可用于生产活性二维材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nucleation Behavior of SnS2 on Thiol Functionalized SAMs During Solution-Based Atomic Layer Deposition

Solution-based atomic layer deposition (sALD) is an emerging technique that transfers the principle of traditional atomic layer deposition (ALD) from the gas phase into a wet chemical environment. This new preparation technique has new and unique properties and requirements. A large number of new surfaces and reactants are available to produce active 2D materials.

In this work a reproducible procedure to coat silicon wafers with a densely packed monolayer of (3-Mercaptopropyl)trimethoxysilane (MPTMS) molecules is presented. These highly functionalized surfaces can be used to seed the nucleation of SnS2 in a solution-based ALD procedure. A coating routine for the production of SnS2 is adapted from ALD to sALD and insight into the nucleation behavior of the reactands is given. X-ray reflectometry (XRR) is used to resolve the nucleation process of SnS2 on an MPTMS self assembled monolayer (SAM) during the first three cycles of an sALD procedure. The comparison of ex situ XRR, in situ XRR, grazing incidence wide-angle X-ray scattering (GIWAXS), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX) measurements, and density functional theory (DFT) calculations find that SnS2 first forms a closed layer and then continues to grow in islands on thiol functionalized silane SAMs. Subsequent coating cycles will continue the growth of the islands laterally and in height.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Biphilic Functional Surfaces for Frost Prevention and Efficient Active Defrosting (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 31/2024) Methodology for Liquid Foam Templating of Hydrogel Foams: A Rheological and Tomographic Characterization (Adv. Mater. Interfaces 31/2024) Controlled Functionalization Strategy of Proteins Preserves their Structural Integrity While Binding to Nanocarriers (Adv. Mater. Interfaces 30/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1