{"title":"庞德-德莱弗-霍尔前馈:超越反馈的激光相位噪声抑制","authors":"Yu-Xin Chao, Zhen-Xing Hua, Xin-Hui Liang, Zong-Pei Yue, Li You, Meng Khoon Tey","doi":"10.1364/optica.516838","DOIUrl":null,"url":null,"abstract":"Pound–Drever–Hall (PDH) laser frequency stabilization is a powerful technique widely used for building narrow linewidth lasers. This technique is, however, ineffective in suppressing high-frequency (>100kHz) laser phase noise detrimental for many applications. Here, we introduce an effective method that can greatly enhance its high-frequency performance. The idea is to recycle the residual PDH signal of a laser locked to a cavity by feedforwarding it directly to the laser output field after a delay fiber. Using this straightforward method, we demonstrate a phase noise suppression capability about four orders of magnitude better than just using the usual PDH feedback for noise around a few MHz. We further find that this method exhibits noise suppression performance equivalent to cavity filtering. This method holds great promise for applications demanding highly stable lasers with diminished phase noise up to tens of MHz (e.g., precise and high-speed control of atomic and molecular quantum states).","PeriodicalId":19515,"journal":{"name":"Optica","volume":"147 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pound–Drever–Hall feedforward: laser phase noise suppression beyond feedback\",\"authors\":\"Yu-Xin Chao, Zhen-Xing Hua, Xin-Hui Liang, Zong-Pei Yue, Li You, Meng Khoon Tey\",\"doi\":\"10.1364/optica.516838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pound–Drever–Hall (PDH) laser frequency stabilization is a powerful technique widely used for building narrow linewidth lasers. This technique is, however, ineffective in suppressing high-frequency (>100kHz) laser phase noise detrimental for many applications. Here, we introduce an effective method that can greatly enhance its high-frequency performance. The idea is to recycle the residual PDH signal of a laser locked to a cavity by feedforwarding it directly to the laser output field after a delay fiber. Using this straightforward method, we demonstrate a phase noise suppression capability about four orders of magnitude better than just using the usual PDH feedback for noise around a few MHz. We further find that this method exhibits noise suppression performance equivalent to cavity filtering. This method holds great promise for applications demanding highly stable lasers with diminished phase noise up to tens of MHz (e.g., precise and high-speed control of atomic and molecular quantum states).\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.516838\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.516838","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Pound–Drever–Hall (PDH) laser frequency stabilization is a powerful technique widely used for building narrow linewidth lasers. This technique is, however, ineffective in suppressing high-frequency (>100kHz) laser phase noise detrimental for many applications. Here, we introduce an effective method that can greatly enhance its high-frequency performance. The idea is to recycle the residual PDH signal of a laser locked to a cavity by feedforwarding it directly to the laser output field after a delay fiber. Using this straightforward method, we demonstrate a phase noise suppression capability about four orders of magnitude better than just using the usual PDH feedback for noise around a few MHz. We further find that this method exhibits noise suppression performance equivalent to cavity filtering. This method holds great promise for applications demanding highly stable lasers with diminished phase noise up to tens of MHz (e.g., precise and high-speed control of atomic and molecular quantum states).
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.