利用光频率梳和可编程光学存储器进行高光谱内存计算

IF 8.4 1区 物理与天体物理 Q1 OPTICS Optica Pub Date : 2024-05-10 DOI:10.1364/optica.522378
Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh
{"title":"利用光频率梳和可编程光学存储器进行高光谱内存计算","authors":"Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh","doi":"10.1364/optica.522378","DOIUrl":null,"url":null,"abstract":"The rapid rise of machine learning drives demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing systems. Researchers explore alternatives, such as in-memory computing architecture, to find energy-efficient solutions. In particular, there is renewed interest in optical computing systems, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing high-throughput optical computing systems to rival electronic hardware remains a challenge. Here, we propose and demonstrate a hyperspectral in-memory computing architecture, which simultaneously utilizes space and frequency multiplexing, using optical frequency combs and programmable optical memories. Our carefully designed three-dimensional opto-electronic computing system offers remarkable parallelism, programmability, and scalability, overcoming typical limitations of optical computing. We have experimentally demonstrated highly parallel, single-shot multiply-accumulate operations with precision exceeding 4 bits in both matrix-vector and matrix-matrix multiplications, suggesting the system’s potential for a wide variety of deep learning and optimization tasks. Our approach presents a realistic pathway to scale beyond peta operations per second, a major stride towards high-throughput, energy-efficient optical computing.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"50 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral in-memory computing with optical frequency combs and programmable optical memories\",\"authors\":\"Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh\",\"doi\":\"10.1364/optica.522378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid rise of machine learning drives demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing systems. Researchers explore alternatives, such as in-memory computing architecture, to find energy-efficient solutions. In particular, there is renewed interest in optical computing systems, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing high-throughput optical computing systems to rival electronic hardware remains a challenge. Here, we propose and demonstrate a hyperspectral in-memory computing architecture, which simultaneously utilizes space and frequency multiplexing, using optical frequency combs and programmable optical memories. Our carefully designed three-dimensional opto-electronic computing system offers remarkable parallelism, programmability, and scalability, overcoming typical limitations of optical computing. We have experimentally demonstrated highly parallel, single-shot multiply-accumulate operations with precision exceeding 4 bits in both matrix-vector and matrix-matrix multiplications, suggesting the system’s potential for a wide variety of deep learning and optimization tasks. Our approach presents a realistic pathway to scale beyond peta operations per second, a major stride towards high-throughput, energy-efficient optical computing.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.522378\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.522378","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习的迅速崛起推动了对大量矩阵-向量乘法运算的需求,从而对传统冯-诺依曼计算系统的能力提出了挑战。研究人员探索内存计算架构等替代方案,以找到高能效的解决方案。特别是,人们对光学计算系统重新产生了兴趣,因为它有可能以更节能的方式处理矩阵矢量乘法运算。尽管取得了令人鼓舞的初步成果,但开发可与电子硬件媲美的高吞吐量光学计算系统仍是一项挑战。在这里,我们提出并展示了一种高光谱内存计算架构,它利用光频率梳和可编程光存储器,同时利用空间和频率复用技术。我们精心设计的三维光电子计算系统具有显著的并行性、可编程性和可扩展性,克服了光学计算的典型限制。我们在实验中演示了高度并行的单次乘积运算,矩阵-向量和矩阵-矩阵乘积的精度都超过了4比特,这表明该系统具有完成各种深度学习和优化任务的潜力。我们的方法为实现每秒千万亿次以上的运算提供了现实途径,是向高吞吐量、高能效光学计算迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral in-memory computing with optical frequency combs and programmable optical memories
The rapid rise of machine learning drives demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing systems. Researchers explore alternatives, such as in-memory computing architecture, to find energy-efficient solutions. In particular, there is renewed interest in optical computing systems, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing high-throughput optical computing systems to rival electronic hardware remains a challenge. Here, we propose and demonstrate a hyperspectral in-memory computing architecture, which simultaneously utilizes space and frequency multiplexing, using optical frequency combs and programmable optical memories. Our carefully designed three-dimensional opto-electronic computing system offers remarkable parallelism, programmability, and scalability, overcoming typical limitations of optical computing. We have experimentally demonstrated highly parallel, single-shot multiply-accumulate operations with precision exceeding 4 bits in both matrix-vector and matrix-matrix multiplications, suggesting the system’s potential for a wide variety of deep learning and optimization tasks. Our approach presents a realistic pathway to scale beyond peta operations per second, a major stride towards high-throughput, energy-efficient optical computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
期刊最新文献
Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation Photonic quantum walk with ultrafast time-bin encoding Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning Piezoelectrically tunable, narrow linewidth photonic integrated extended-DBR lasers Hyperentanglement quantum communication over a 50 km noisy fiber channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1