半休斯勒 LiScSi1-xCx 合金在 α 相中的弹性、电子、光学和热力学性质:DFT 模拟研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-07-29 DOI:10.1007/s11664-024-11330-3
S. Benyettou, S. Ferahtia, S. Saib, N. Bouarissa
{"title":"半休斯勒 LiScSi1-xCx 合金在 α 相中的弹性、电子、光学和热力学性质:DFT 模拟研究","authors":"S. Benyettou, S. Ferahtia, S. Saib, N. Bouarissa","doi":"10.1007/s11664-024-11330-3","DOIUrl":null,"url":null,"abstract":"<p>The structural, elastic, electronic, and thermodynamic properties of a LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy in the α-phase were investigated using density functional theory with the plane-wave pseudopotential method and the alchemical mixing approximation in ABINIT code. We computed ground-state properties including lattice constants, bulk modulus, energy gap, refractive index, and optical dielectric constant for the LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> compounds. Our results align well with existing theoretical data for the parent compounds LiScSi and LiScC. We found that the fundamental bandgap for the α-LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy varied from 0.865 eV to 1.143 eV using the B3LYP approach, indicating potential applications in optoelectronic devices such as photodetectors and light-emitting diodes (LEDs), where precise control over electronic and optical properties is crucial. Additionally, we calculated the electron and hole effective masses, which showed a decrease with increasing carbon concentration; the electron effective mass ranged from 0.042m* for LiScSi to 0.035m* for LiSiC. The LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy in the α-phase consistently exhibited direct semiconductor behavior (X → X) across all concentrations. We also predicted the variation in thermodynamic properties, including unit cell volume, bulk modulus, heat capacity, and thermal expansion coefficient, with temperature for various carbon concentrations. These findings contribute to a deeper understanding of the material’s potential applications in electronic and thermoelectric devices.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"78 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic, Electronic, Optical, and Thermodynamic Properties of the Half-Heusler LiScSi1−xCx Alloy in α-Phase: A DFT Simulation Study\",\"authors\":\"S. Benyettou, S. Ferahtia, S. Saib, N. Bouarissa\",\"doi\":\"10.1007/s11664-024-11330-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structural, elastic, electronic, and thermodynamic properties of a LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy in the α-phase were investigated using density functional theory with the plane-wave pseudopotential method and the alchemical mixing approximation in ABINIT code. We computed ground-state properties including lattice constants, bulk modulus, energy gap, refractive index, and optical dielectric constant for the LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> compounds. Our results align well with existing theoretical data for the parent compounds LiScSi and LiScC. We found that the fundamental bandgap for the α-LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy varied from 0.865 eV to 1.143 eV using the B3LYP approach, indicating potential applications in optoelectronic devices such as photodetectors and light-emitting diodes (LEDs), where precise control over electronic and optical properties is crucial. Additionally, we calculated the electron and hole effective masses, which showed a decrease with increasing carbon concentration; the electron effective mass ranged from 0.042m* for LiScSi to 0.035m* for LiSiC. The LiScSi<sub>1−<i>x</i></sub>C<sub><i>x</i></sub> alloy in the α-phase consistently exhibited direct semiconductor behavior (X → X) across all concentrations. We also predicted the variation in thermodynamic properties, including unit cell volume, bulk modulus, heat capacity, and thermal expansion coefficient, with temperature for various carbon concentrations. These findings contribute to a deeper understanding of the material’s potential applications in electronic and thermoelectric devices.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11330-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11330-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们在 ABINIT 代码中采用平面波伪势方法和炼金混合近似的密度泛函理论,研究了α相锂碳硅(LiScSi1-xCx)合金的结构、弹性、电子和热力学性质。我们计算了 LiScSi1-xCx 复合物的基态性质,包括晶格常数、体积模量、能隙、折射率和光介电常数。我们的研究结果与母体化合物 LiScSi 和 LiScC 的现有理论数据非常吻合。利用 B3LYP 方法,我们发现 α-LiScSi1-xCx 合金的基本带隙从 0.865 eV 到 1.143 eV 不等,这表明它在光电设备(如光电探测器和发光二极管 (LED))中具有潜在的应用前景,因为在这些设备中,对电子和光学特性的精确控制至关重要。此外,我们还计算了电子和空穴的有效质量,结果表明电子和空穴的有效质量随着碳浓度的增加而降低;电子有效质量从 LiScSi 的 0.042m* 到 LiSiC 的 0.035m*。在所有浓度下,处于 α 相的 LiScSi1-xCx 合金始终表现出直接半导体行为(X → X)。我们还预测了不同碳浓度下单位晶胞体积、体积模量、热容量和热膨胀系数等热力学性质随温度的变化。这些发现有助于深入了解该材料在电子和热电设备中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic, Electronic, Optical, and Thermodynamic Properties of the Half-Heusler LiScSi1−xCx Alloy in α-Phase: A DFT Simulation Study

The structural, elastic, electronic, and thermodynamic properties of a LiScSi1−xCx alloy in the α-phase were investigated using density functional theory with the plane-wave pseudopotential method and the alchemical mixing approximation in ABINIT code. We computed ground-state properties including lattice constants, bulk modulus, energy gap, refractive index, and optical dielectric constant for the LiScSi1−xCx compounds. Our results align well with existing theoretical data for the parent compounds LiScSi and LiScC. We found that the fundamental bandgap for the α-LiScSi1−xCx alloy varied from 0.865 eV to 1.143 eV using the B3LYP approach, indicating potential applications in optoelectronic devices such as photodetectors and light-emitting diodes (LEDs), where precise control over electronic and optical properties is crucial. Additionally, we calculated the electron and hole effective masses, which showed a decrease with increasing carbon concentration; the electron effective mass ranged from 0.042m* for LiScSi to 0.035m* for LiSiC. The LiScSi1−xCx alloy in the α-phase consistently exhibited direct semiconductor behavior (X → X) across all concentrations. We also predicted the variation in thermodynamic properties, including unit cell volume, bulk modulus, heat capacity, and thermal expansion coefficient, with temperature for various carbon concentrations. These findings contribute to a deeper understanding of the material’s potential applications in electronic and thermoelectric devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1