Cerastokunin 的结构、生化特征和分子机制:一种具有潜在凝血酶、Xa 因子和血小板抑制作用的新型 Kunitz 型多肽。

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY The Protein Journal Pub Date : 2024-08-02 DOI:10.1007/s10930-024-10226-9
Noussaiba Saghour, Fatah Chérifi, Samah Saoud, Younes Zebbiche, Amel Meribai, Nadjia Bekkari, Taright-Mahi Samya, Fatima Laraba-Djebari
{"title":"Cerastokunin 的结构、生化特征和分子机制:一种具有潜在凝血酶、Xa 因子和血小板抑制作用的新型 Kunitz 型多肽。","authors":"Noussaiba Saghour,&nbsp;Fatah Chérifi,&nbsp;Samah Saoud,&nbsp;Younes Zebbiche,&nbsp;Amel Meribai,&nbsp;Nadjia Bekkari,&nbsp;Taright-Mahi Samya,&nbsp;Fatima Laraba-Djebari","doi":"10.1007/s10930-024-10226-9","DOIUrl":null,"url":null,"abstract":"<div><p>The current investigation focused on separating <i>Cerastes cerastes</i> venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin’s 3D structure had 12% α-helices and 21% β-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose–response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial’s duration.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 4","pages":"888 - 909"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, Biochemical Characterization and Molecular Mechanism of Cerastokunin: A New Kunitz-Type Peptide with Potential Inhibition of Thrombin, Factor Xa and Platelets\",\"authors\":\"Noussaiba Saghour,&nbsp;Fatah Chérifi,&nbsp;Samah Saoud,&nbsp;Younes Zebbiche,&nbsp;Amel Meribai,&nbsp;Nadjia Bekkari,&nbsp;Taright-Mahi Samya,&nbsp;Fatima Laraba-Djebari\",\"doi\":\"10.1007/s10930-024-10226-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current investigation focused on separating <i>Cerastes cerastes</i> venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin’s 3D structure had 12% α-helices and 21% β-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose–response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial’s duration.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"43 4\",\"pages\":\"888 - 909\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-024-10226-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10226-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究重点是分离 Cerastes cerastes 毒液,以产生首个 Kunitz 型多肽。Cerastokunin 是一种 7.75 kDa 的多肽,根据其抗胰蛋白酶作用,通过三步层析将其纯化至均一。通过 LC-MALDI-MSMS 重新测序,发现 Cerastokunin 包含 67 个氨基酸残基。经与 Kunitz 型肽进行比对,两者具有高度相似性。Cerastokunin 的三维结构中有 12% 的 α 螺旋和 21% 的 β 链,pI 为 8.48。Cerastokunin 可抑制凝血酶和胰蛋白酶的蛋白酶活性,阻断内在和外在凝血途径,从而显示出强大的抗凝作用。在 PT 和 aPPT 中,Cerastokunin 都能以剂量依赖的方式延长凝血时间。如分子对接所示,Cerastokunin 与 Lys48 和 Gln192 直接结合,可抑制凝血酶、Xa 因子和胰蛋白酶。一旦受到凝血酶的刺激,Cerastokunin 就会对 PARs 依赖性途径血小板产生剂量反应性阻断。在一项体内研究中,与抗血栓药物的效果相比,Cerastokunin 浓度的增加可使小鼠卡拉胶模型中的尾部血栓减少更多。在所有 Cerastokunin 剂量(最高达 6 毫克/千克)的试验期间,接受挑战的小鼠均未出现体内毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural, Biochemical Characterization and Molecular Mechanism of Cerastokunin: A New Kunitz-Type Peptide with Potential Inhibition of Thrombin, Factor Xa and Platelets

The current investigation focused on separating Cerastes cerastes venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin’s 3D structure had 12% α-helices and 21% β-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose–response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial’s duration.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Protein Journal
The Protein Journal 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
57
审稿时长
12 months
期刊介绍: The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.
期刊最新文献
Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications HaloClass: Salt-Tolerant Protein Classification with Protein Language Models Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1