Rossella Sesia, Silvia Spriano, Marco Sangermano, Massimo Calovi, Stefano Rossi, Sara Ferraris
{"title":"用于保护与水基介质接触的钢材免受腐蚀的天然单宁层","authors":"Rossella Sesia, Silvia Spriano, Marco Sangermano, Massimo Calovi, Stefano Rossi, Sara Ferraris","doi":"10.3390/coatings14080965","DOIUrl":null,"url":null,"abstract":"Numerous strategies have been developed for the corrosion protection of steel; however, most of them have a significant environmental impact and employ toxic compounds. Tannins are a green and promising solution for sustainable corrosion protection strategies. In this context, this work was focused on natural (condensed and hydrolysable) tannin layers as a possible corrosion protection strategy for carbon steel. The impact of the tannins’ dissolution medium (ultrapure water or Phosphate-Buffered Saline), surface pre-treatment (acid pickling or plasma), and deposition technology (dipping or spin coating) on layer homogeneity and adhesion has been evaluated. The effects of these parameters on coating formation, homogeneity, and adhesion have been investigated by means of visual inspections, swabbing, Fourier Transformed Infrared spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) and tape adhesion tests. Preliminary electrochemical corrosion tests have been performed on the most promising material (carbon steel acid pickled and coated with a hydrolysable tannin solved in water by spin coating) to estimate the protective ability of the developed layers and highlight the main criticisms to be overcome.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Tannin Layers for the Corrosion Protection of Steel in Contact with Water-Based Media\",\"authors\":\"Rossella Sesia, Silvia Spriano, Marco Sangermano, Massimo Calovi, Stefano Rossi, Sara Ferraris\",\"doi\":\"10.3390/coatings14080965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous strategies have been developed for the corrosion protection of steel; however, most of them have a significant environmental impact and employ toxic compounds. Tannins are a green and promising solution for sustainable corrosion protection strategies. In this context, this work was focused on natural (condensed and hydrolysable) tannin layers as a possible corrosion protection strategy for carbon steel. The impact of the tannins’ dissolution medium (ultrapure water or Phosphate-Buffered Saline), surface pre-treatment (acid pickling or plasma), and deposition technology (dipping or spin coating) on layer homogeneity and adhesion has been evaluated. The effects of these parameters on coating formation, homogeneity, and adhesion have been investigated by means of visual inspections, swabbing, Fourier Transformed Infrared spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) and tape adhesion tests. Preliminary electrochemical corrosion tests have been performed on the most promising material (carbon steel acid pickled and coated with a hydrolysable tannin solved in water by spin coating) to estimate the protective ability of the developed layers and highlight the main criticisms to be overcome.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14080965\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14080965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Natural Tannin Layers for the Corrosion Protection of Steel in Contact with Water-Based Media
Numerous strategies have been developed for the corrosion protection of steel; however, most of them have a significant environmental impact and employ toxic compounds. Tannins are a green and promising solution for sustainable corrosion protection strategies. In this context, this work was focused on natural (condensed and hydrolysable) tannin layers as a possible corrosion protection strategy for carbon steel. The impact of the tannins’ dissolution medium (ultrapure water or Phosphate-Buffered Saline), surface pre-treatment (acid pickling or plasma), and deposition technology (dipping or spin coating) on layer homogeneity and adhesion has been evaluated. The effects of these parameters on coating formation, homogeneity, and adhesion have been investigated by means of visual inspections, swabbing, Fourier Transformed Infrared spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) and tape adhesion tests. Preliminary electrochemical corrosion tests have been performed on the most promising material (carbon steel acid pickled and coated with a hydrolysable tannin solved in water by spin coating) to estimate the protective ability of the developed layers and highlight the main criticisms to be overcome.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material