A. Cuoci, G. Bucci, M. Sutti, T. Faravelli, A. Frassoldati
{"title":"以富含 H 的天然气为燃料的家用冷凝锅炉污染物排放的实验和数值研究[式略]","authors":"A. Cuoci, G. Bucci, M. Sutti, T. Faravelli, A. Frassoldati","doi":"10.1016/j.proci.2024.105473","DOIUrl":null,"url":null,"abstract":"Hydrogen is recognized as a promising resource for decarbonizing not only the industrial sector, but also the domestic heating systems. Through the partial substitution of natural gas with hydrogen, domestic combustion-based conversion systems can potentially offer improved efficiency, reduced carbon emissions, and cleaner combustion, i.e., lower levels of particulate matter. However, hydrogen exhibits properties that are significantly different from natural gas: (i) because of its higher laminar flame speed, hydrogen is more susceptible to flashback, which may pose significant concerns from the safety point of view; (ii) because of its higher adiabatic temperature, NOx emissions are expected to increase. Thus, experimental and numerical investigations are needed to better understand how the addition of hydrogen to the fuel mixture modifies the combustion process and how to mitigate/control the higher propensity to flashback and NOx formation within domestic devices.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"5 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study of pollutant emissions from a domestic condensing boiler fed with natural gas enriched with H[formula omitted]\",\"authors\":\"A. Cuoci, G. Bucci, M. Sutti, T. Faravelli, A. Frassoldati\",\"doi\":\"10.1016/j.proci.2024.105473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen is recognized as a promising resource for decarbonizing not only the industrial sector, but also the domestic heating systems. Through the partial substitution of natural gas with hydrogen, domestic combustion-based conversion systems can potentially offer improved efficiency, reduced carbon emissions, and cleaner combustion, i.e., lower levels of particulate matter. However, hydrogen exhibits properties that are significantly different from natural gas: (i) because of its higher laminar flame speed, hydrogen is more susceptible to flashback, which may pose significant concerns from the safety point of view; (ii) because of its higher adiabatic temperature, NOx emissions are expected to increase. Thus, experimental and numerical investigations are needed to better understand how the addition of hydrogen to the fuel mixture modifies the combustion process and how to mitigate/control the higher propensity to flashback and NOx formation within domestic devices.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105473\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105473","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental and numerical study of pollutant emissions from a domestic condensing boiler fed with natural gas enriched with H[formula omitted]
Hydrogen is recognized as a promising resource for decarbonizing not only the industrial sector, but also the domestic heating systems. Through the partial substitution of natural gas with hydrogen, domestic combustion-based conversion systems can potentially offer improved efficiency, reduced carbon emissions, and cleaner combustion, i.e., lower levels of particulate matter. However, hydrogen exhibits properties that are significantly different from natural gas: (i) because of its higher laminar flame speed, hydrogen is more susceptible to flashback, which may pose significant concerns from the safety point of view; (ii) because of its higher adiabatic temperature, NOx emissions are expected to increase. Thus, experimental and numerical investigations are needed to better understand how the addition of hydrogen to the fuel mixture modifies the combustion process and how to mitigate/control the higher propensity to flashback and NOx formation within domestic devices.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.