Pietro Bilancia , Alberto Locatelli , Alessio Tutarini , Mirko Mucciarini , Manuel Iori , Marcello Pellicciari
{"title":"利用机器学习方法对工业伺服电机进行在线运动精度补偿","authors":"Pietro Bilancia , Alberto Locatelli , Alessio Tutarini , Mirko Mucciarini , Manuel Iori , Marcello Pellicciari","doi":"10.1016/j.rcim.2024.102838","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the crucial aspect of position error modeling and compensation in industrial servomechanisms with the aim to achieve accurate control and high-performance operation in industrial robots and automated production systems. The inherent complexity and nonlinear behavior of these modules, usually consisting of a servomotor and a speed reducer, often challenge traditional analytical modeling approaches. In response, the study extensively explores the design and implementation of Machine Learning (ML) algorithms to obtain a comprehensive model of the Transmission Error (TE) in rotating vector reducers, which is a main source of robot motion accuracy errors. The ML models are trained with experimental data obtained from a special purpose test rig, where the reducer is tested under different combinations of input speed, applied load and oil temperature. In the second part of the work, the resulting predictive model, tailored to capture the intricate dynamics of the analyzed reducer, is imported into a programmable logic controller to enable online compensation strategies during the execution of custom motion profiles. Experimental tests are conducted using two distinct motion profiles: one generated with a cycloidal law, typical of industrial machinery, and the other extrapolated from the joints of an industrial robot during a pick-and-place task. The results demonstrate the effectiveness of the proposed approach, enabling accurate prediction and substantial reductions (over 90%) in the overall reducer TE through the implemented predictive model.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102838"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S073658452400125X/pdfft?md5=07da8c50389e390e8f49cb701257c0b4&pid=1-s2.0-S073658452400125X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Online motion accuracy compensation of industrial servomechanisms using machine learning approaches\",\"authors\":\"Pietro Bilancia , Alberto Locatelli , Alessio Tutarini , Mirko Mucciarini , Manuel Iori , Marcello Pellicciari\",\"doi\":\"10.1016/j.rcim.2024.102838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the crucial aspect of position error modeling and compensation in industrial servomechanisms with the aim to achieve accurate control and high-performance operation in industrial robots and automated production systems. The inherent complexity and nonlinear behavior of these modules, usually consisting of a servomotor and a speed reducer, often challenge traditional analytical modeling approaches. In response, the study extensively explores the design and implementation of Machine Learning (ML) algorithms to obtain a comprehensive model of the Transmission Error (TE) in rotating vector reducers, which is a main source of robot motion accuracy errors. The ML models are trained with experimental data obtained from a special purpose test rig, where the reducer is tested under different combinations of input speed, applied load and oil temperature. In the second part of the work, the resulting predictive model, tailored to capture the intricate dynamics of the analyzed reducer, is imported into a programmable logic controller to enable online compensation strategies during the execution of custom motion profiles. Experimental tests are conducted using two distinct motion profiles: one generated with a cycloidal law, typical of industrial machinery, and the other extrapolated from the joints of an industrial robot during a pick-and-place task. The results demonstrate the effectiveness of the proposed approach, enabling accurate prediction and substantial reductions (over 90%) in the overall reducer TE through the implemented predictive model.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"91 \",\"pages\":\"Article 102838\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S073658452400125X/pdfft?md5=07da8c50389e390e8f49cb701257c0b4&pid=1-s2.0-S073658452400125X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073658452400125X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073658452400125X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Online motion accuracy compensation of industrial servomechanisms using machine learning approaches
This paper addresses the crucial aspect of position error modeling and compensation in industrial servomechanisms with the aim to achieve accurate control and high-performance operation in industrial robots and automated production systems. The inherent complexity and nonlinear behavior of these modules, usually consisting of a servomotor and a speed reducer, often challenge traditional analytical modeling approaches. In response, the study extensively explores the design and implementation of Machine Learning (ML) algorithms to obtain a comprehensive model of the Transmission Error (TE) in rotating vector reducers, which is a main source of robot motion accuracy errors. The ML models are trained with experimental data obtained from a special purpose test rig, where the reducer is tested under different combinations of input speed, applied load and oil temperature. In the second part of the work, the resulting predictive model, tailored to capture the intricate dynamics of the analyzed reducer, is imported into a programmable logic controller to enable online compensation strategies during the execution of custom motion profiles. Experimental tests are conducted using two distinct motion profiles: one generated with a cycloidal law, typical of industrial machinery, and the other extrapolated from the joints of an industrial robot during a pick-and-place task. The results demonstrate the effectiveness of the proposed approach, enabling accurate prediction and substantial reductions (over 90%) in the overall reducer TE through the implemented predictive model.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.