Ehab Tousson, Ibrahim E. T. El-Sayed, Hebatalla Nashaat Elsharkawy, Amira S. Ahmed
{"title":"姜黄素纳米颗粒对氧化铝纳米颗粒诱导的雄性大鼠肾脏毒性、DNA损伤、氧化应激、PCNA和TNFα变化的改善和治疗作用","authors":"Ehab Tousson, Ibrahim E. T. El-Sayed, Hebatalla Nashaat Elsharkawy, Amira S. Ahmed","doi":"10.1002/tox.24392","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Aluminum oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub> NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform <b>(</b>Cur NPs) against Al<sub>2</sub>O<sub>3</sub> NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al<sub>2</sub>O<sub>3</sub> NPs; G4, (Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs) received Cur NPs and Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs) received Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al<sub>2</sub>O<sub>3</sub> NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al<sub>2</sub>O<sub>3</sub> NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs than Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al<sub>2</sub>O<sub>3</sub> NPs in male albino rats.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorating and Therapeutic Impact of Curcumin Nanoparticles Against Aluminum Oxide Nanoparticles Induced Kidney Toxicity, DNA Damage, Oxidative Stress, PCNA and TNFα Alteration in Male Rats\",\"authors\":\"Ehab Tousson, Ibrahim E. T. El-Sayed, Hebatalla Nashaat Elsharkawy, Amira S. Ahmed\",\"doi\":\"10.1002/tox.24392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Aluminum oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub> NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform <b>(</b>Cur NPs) against Al<sub>2</sub>O<sub>3</sub> NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al<sub>2</sub>O<sub>3</sub> NPs; G4, (Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs) received Cur NPs and Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs) received Al<sub>2</sub>O<sub>3</sub> NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al<sub>2</sub>O<sub>3</sub> NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al<sub>2</sub>O<sub>3</sub> NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al<sub>2</sub>O<sub>3</sub> NPs + Cur NPs than Cur NPs + Al<sub>2</sub>O<sub>3</sub> NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al<sub>2</sub>O<sub>3</sub> NPs in male albino rats.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24392\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24392","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ameliorating and Therapeutic Impact of Curcumin Nanoparticles Against Aluminum Oxide Nanoparticles Induced Kidney Toxicity, DNA Damage, Oxidative Stress, PCNA and TNFα Alteration in Male Rats
Aluminum oxide nanoparticles (Al2O3 NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform (Cur NPs) against Al2O3 NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al2O3 NPs; G4, (Cur NPs + Al2O3 NPs) received Cur NPs and Al2O3 NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al2O3 NPs + Cur NPs) received Al2O3 NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al2O3 NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al2O3 NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al2O3 NPs + Cur NPs than Cur NPs + Al2O3 NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al2O3 NPs in male albino rats.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.