叶面肥的表面涂层

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Coatings Pub Date : 2024-08-08 DOI:10.3390/coatings14081007
Yojana J. P. Carreón, Angel A. Pereyra Zarate, Alondra E. Pérez Sánchez, Orlando Díaz-Hernández, J. González-Gutiérrez
{"title":"叶面肥的表面涂层","authors":"Yojana J. P. Carreón, Angel A. Pereyra Zarate, Alondra E. Pérez Sánchez, Orlando Díaz-Hernández, J. González-Gutiérrez","doi":"10.3390/coatings14081007","DOIUrl":null,"url":null,"abstract":"Foliar fertilization, an effective agricultural practice, involves the application of nutrients directly through droplets on plant leaves. The mechanisms of mass transport and deposition that arise from the drying of a drop determine the distribution of mass on a surface. Understanding these processes is crucial for optimizing foliar fertilization, ensuring even nutrient distribution, and improving crop yields and quality. This study experimentally investigates deposit formation from the evaporation of fertilizer droplets in various configurations: sessile, vertical, and pendant. We explored the effects of initial droplet volume, vapor pressure, and sorbitol presence on the final deposit morphology. The results reveal distinctive morphological patterns. Sessile drops exhibit two types of deposits—central crystal accumulation with fibrous structures or entirely fibrous structures. In contrast, vertical drops display two zones—fibrous structures at the bottom and small aggregates at the top. On the other hand, pendant drops predominantly feature intertwined crystals with peripheral fibrous structures. We found that high vapor pressures (RH = 60%) inhibit deposit formation within 72 h. Furthermore, the study measures relative evaporation time, showing that sessile droplets exhibit the longest evaporation times, followed by vertical and pendant droplets. Texture analysis, based on GLCM entropy, reveals that deposits generated under low vapor pressure (RH = 20%) show no significant differences in their entropy values, regardless of the droplet configuration and its initial volume. However, at intermediate vapor pressure (RH = 40%), entropy values vary significantly with droplet volume and configuration, being higher in sessile drops and lower in vertical ones. Additionally, we investigated the impact of sorbitol on the coating of sessile fertilizer droplets. We find that configurational entropy decreases exponentially with sorbitol concentration, inducing a morphological transition from fibrous structures to dispersed small aggregates. These findings highlight the complexity of pattern formation in fertilizer deposits and their potential implications for optimizing surface coating processes.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Coating with Foliar Fertilizers\",\"authors\":\"Yojana J. P. Carreón, Angel A. Pereyra Zarate, Alondra E. Pérez Sánchez, Orlando Díaz-Hernández, J. González-Gutiérrez\",\"doi\":\"10.3390/coatings14081007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foliar fertilization, an effective agricultural practice, involves the application of nutrients directly through droplets on plant leaves. The mechanisms of mass transport and deposition that arise from the drying of a drop determine the distribution of mass on a surface. Understanding these processes is crucial for optimizing foliar fertilization, ensuring even nutrient distribution, and improving crop yields and quality. This study experimentally investigates deposit formation from the evaporation of fertilizer droplets in various configurations: sessile, vertical, and pendant. We explored the effects of initial droplet volume, vapor pressure, and sorbitol presence on the final deposit morphology. The results reveal distinctive morphological patterns. Sessile drops exhibit two types of deposits—central crystal accumulation with fibrous structures or entirely fibrous structures. In contrast, vertical drops display two zones—fibrous structures at the bottom and small aggregates at the top. On the other hand, pendant drops predominantly feature intertwined crystals with peripheral fibrous structures. We found that high vapor pressures (RH = 60%) inhibit deposit formation within 72 h. Furthermore, the study measures relative evaporation time, showing that sessile droplets exhibit the longest evaporation times, followed by vertical and pendant droplets. Texture analysis, based on GLCM entropy, reveals that deposits generated under low vapor pressure (RH = 20%) show no significant differences in their entropy values, regardless of the droplet configuration and its initial volume. However, at intermediate vapor pressure (RH = 40%), entropy values vary significantly with droplet volume and configuration, being higher in sessile drops and lower in vertical ones. Additionally, we investigated the impact of sorbitol on the coating of sessile fertilizer droplets. We find that configurational entropy decreases exponentially with sorbitol concentration, inducing a morphological transition from fibrous structures to dispersed small aggregates. These findings highlight the complexity of pattern formation in fertilizer deposits and their potential implications for optimizing surface coating processes.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14081007\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14081007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

叶面施肥是一种有效的农业实践,它是通过液滴直接在植物叶片上施用养分。液滴干燥过程中产生的质量传输和沉积机制决定了表面的质量分布。了解这些过程对于优化叶面施肥、确保养分均匀分布以及提高作物产量和质量至关重要。本研究通过实验研究了肥滴蒸发时形成的沉积物,这些肥滴有不同的结构:无柄式、垂直式和下垂式。我们探讨了初始液滴体积、蒸汽压力和山梨醇的存在对最终沉积物形态的影响。结果发现了独特的形态模式。静止液滴显示出两种类型的沉积物--带有纤维结构的中心晶体堆积或完全纤维结构。与此相反,垂直液滴显示出两个区域--底部的纤维结构和顶部的小聚集体。另一方面,垂滴主要以交织晶体和外围纤维结构为特征。此外,研究还测量了相对蒸发时间,结果表明无柄液滴的蒸发时间最长,其次是垂直液滴和悬挂液滴。根据 GLCM 熵值进行的纹理分析表明,在低蒸汽压(相对湿度 = 20%)下生成的沉积物,无论液滴结构和初始体积如何,其熵值均无明显差异。然而,在中等蒸汽压力(相对湿度 = 40%)下,熵值随液滴体积和构造的变化而显著不同,无柄液滴的熵值较高,而垂直液滴的熵值较低。此外,我们还研究了山梨醇对无柄肥料液滴涂层的影响。我们发现,构型熵会随着山梨醇浓度的增加而呈指数下降,从而导致形态从纤维状结构转变为分散的小聚集体。这些发现凸显了化肥沉积中图案形成的复杂性及其对优化表面涂层工艺的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Coating with Foliar Fertilizers
Foliar fertilization, an effective agricultural practice, involves the application of nutrients directly through droplets on plant leaves. The mechanisms of mass transport and deposition that arise from the drying of a drop determine the distribution of mass on a surface. Understanding these processes is crucial for optimizing foliar fertilization, ensuring even nutrient distribution, and improving crop yields and quality. This study experimentally investigates deposit formation from the evaporation of fertilizer droplets in various configurations: sessile, vertical, and pendant. We explored the effects of initial droplet volume, vapor pressure, and sorbitol presence on the final deposit morphology. The results reveal distinctive morphological patterns. Sessile drops exhibit two types of deposits—central crystal accumulation with fibrous structures or entirely fibrous structures. In contrast, vertical drops display two zones—fibrous structures at the bottom and small aggregates at the top. On the other hand, pendant drops predominantly feature intertwined crystals with peripheral fibrous structures. We found that high vapor pressures (RH = 60%) inhibit deposit formation within 72 h. Furthermore, the study measures relative evaporation time, showing that sessile droplets exhibit the longest evaporation times, followed by vertical and pendant droplets. Texture analysis, based on GLCM entropy, reveals that deposits generated under low vapor pressure (RH = 20%) show no significant differences in their entropy values, regardless of the droplet configuration and its initial volume. However, at intermediate vapor pressure (RH = 40%), entropy values vary significantly with droplet volume and configuration, being higher in sessile drops and lower in vertical ones. Additionally, we investigated the impact of sorbitol on the coating of sessile fertilizer droplets. We find that configurational entropy decreases exponentially with sorbitol concentration, inducing a morphological transition from fibrous structures to dispersed small aggregates. These findings highlight the complexity of pattern formation in fertilizer deposits and their potential implications for optimizing surface coating processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
期刊最新文献
The Construction of a Small-Caliber Barrel Wear Model and a Study of the Barrel Wear Rule Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite Shelf-Life Extension and Quality Changes of Fresh-Cut Apple via Sago and Soy-Oil-Based Edible Coatings Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1