用于癌症诊断的 DNA编码质子气泡聚集双微粒体 RNA SERS 信号

Aggregate Pub Date : 2024-08-08 DOI:10.1002/agt2.636
Yu Yang, Hao Lu, Dan Fang, Yuyuan Zhang, Yuteng Tang, Songsong Zhao, Jun Yan, Xiaojie Qin, Jianlei Shen, Fan Yang
{"title":"用于癌症诊断的 DNA编码质子气泡聚集双微粒体 RNA SERS 信号","authors":"Yu Yang, Hao Lu, Dan Fang, Yuyuan Zhang, Yuteng Tang, Songsong Zhao, Jun Yan, Xiaojie Qin, Jianlei Shen, Fan Yang","doi":"10.1002/agt2.636","DOIUrl":null,"url":null,"abstract":"Solid bubbles have expanded the SERS assay toolbox, but their detection performance in biofluids is still hampered by the irrational design of the plasmonic sensing interface. A plasmonic bubble aggregate‐driven DNA‐encoded SERS assay is reported here that enables simultaneous, ultrasensitive, and specific detection of multiple miRNAs in blood samples for accurate cancer diagnosis. In this assay, the buoyancy of plasmonic bubbles allows them to self‐aggregate at a droplet apex for SERS reconfiguration, form single‐layer bubble aggregates with plasmonic nanogaps, and prevent the coffee ring effect during evaporation assembly. Furthermore, DNA‐encoded plasmonic bubbles seamlessly couple with dual‐color catalytic hybridization assembly to amplify the specific miRNA‐responsive Raman signal, and function as both an analyte concentrator and a Raman signal aggregator without external forces. Using these merits, this magnet‐free, portable assay achieves femtomolar dual‐miRNA quantitation with single‐base resolution, simultaneous miRNA detection across four cell lines, and accurate cancer diagnosis (AUC = 1) via analyzing 40 blood samples with machine learning, thus providing a promising tool for clinical diagnosis.","PeriodicalId":501414,"journal":{"name":"Aggregate","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA‐encoded plasmonic bubbles aggregating dual‐microRNA SERS signals for cancer diagnosis\",\"authors\":\"Yu Yang, Hao Lu, Dan Fang, Yuyuan Zhang, Yuteng Tang, Songsong Zhao, Jun Yan, Xiaojie Qin, Jianlei Shen, Fan Yang\",\"doi\":\"10.1002/agt2.636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid bubbles have expanded the SERS assay toolbox, but their detection performance in biofluids is still hampered by the irrational design of the plasmonic sensing interface. A plasmonic bubble aggregate‐driven DNA‐encoded SERS assay is reported here that enables simultaneous, ultrasensitive, and specific detection of multiple miRNAs in blood samples for accurate cancer diagnosis. In this assay, the buoyancy of plasmonic bubbles allows them to self‐aggregate at a droplet apex for SERS reconfiguration, form single‐layer bubble aggregates with plasmonic nanogaps, and prevent the coffee ring effect during evaporation assembly. Furthermore, DNA‐encoded plasmonic bubbles seamlessly couple with dual‐color catalytic hybridization assembly to amplify the specific miRNA‐responsive Raman signal, and function as both an analyte concentrator and a Raman signal aggregator without external forces. Using these merits, this magnet‐free, portable assay achieves femtomolar dual‐miRNA quantitation with single‐base resolution, simultaneous miRNA detection across four cell lines, and accurate cancer diagnosis (AUC = 1) via analyzing 40 blood samples with machine learning, thus providing a promising tool for clinical diagnosis.\",\"PeriodicalId\":501414,\"journal\":{\"name\":\"Aggregate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/agt2.636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/agt2.636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体气泡扩展了 SERS 检测工具箱,但其在生物流体中的检测性能仍然受到等离子传感界面设计不合理的影响。本文报告了一种由质子气泡聚合体驱动的 DNA 编码 SERS 检测方法,它能同时、超灵敏、特异性地检测血液样本中的多种 miRNA,从而准确诊断癌症。在这种检测方法中,质子气泡的浮力使它们能够在液滴顶点自我聚集以进行 SERS 重构,形成具有质子纳米间隙的单层气泡聚集体,并防止蒸发组装过程中的咖啡环效应。此外,DNA编码的质子气泡与双色催化杂交组件无缝耦合,以放大特定的 miRNA 响应拉曼信号,并在无外力作用下同时充当分析物浓缩器和拉曼信号聚集器。利用这些优点,这种无磁铁、便携式检测方法实现了单碱基分辨率的飞摩尔双miRNA定量,同时检测四种细胞系的miRNA,并通过机器学习分析40份血液样本,准确诊断癌症(AUC = 1),从而为临床诊断提供了一种前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA‐encoded plasmonic bubbles aggregating dual‐microRNA SERS signals for cancer diagnosis
Solid bubbles have expanded the SERS assay toolbox, but their detection performance in biofluids is still hampered by the irrational design of the plasmonic sensing interface. A plasmonic bubble aggregate‐driven DNA‐encoded SERS assay is reported here that enables simultaneous, ultrasensitive, and specific detection of multiple miRNAs in blood samples for accurate cancer diagnosis. In this assay, the buoyancy of plasmonic bubbles allows them to self‐aggregate at a droplet apex for SERS reconfiguration, form single‐layer bubble aggregates with plasmonic nanogaps, and prevent the coffee ring effect during evaporation assembly. Furthermore, DNA‐encoded plasmonic bubbles seamlessly couple with dual‐color catalytic hybridization assembly to amplify the specific miRNA‐responsive Raman signal, and function as both an analyte concentrator and a Raman signal aggregator without external forces. Using these merits, this magnet‐free, portable assay achieves femtomolar dual‐miRNA quantitation with single‐base resolution, simultaneous miRNA detection across four cell lines, and accurate cancer diagnosis (AUC = 1) via analyzing 40 blood samples with machine learning, thus providing a promising tool for clinical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Droplets Cas13a‐RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer Aggregation‐based dual‐target probe for dual‐colour super‐resolution monitoring mitophagy and evaluating drugs regulating mitochondria A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti‐recurrence of diabetic wound infection by activating the cGAS‐STING pathway Near‐room‐temperature π‐conjugated nematic liquid crystals in molecules with a flexible seven‐membered ring structure Spin‐coating fabrication of high‐yield and uniform organic thin‐film transistors via a primer template growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1