{"title":"利用考虑原位应力状态的重复加载 CBR 试验估算路基弹性模量的实验和数值模型表述","authors":"Supratim Kaushik , Suman Kumar , Anjan Kumar Siddagangaiah","doi":"10.1016/j.trgeo.2024.101331","DOIUrl":null,"url":null,"abstract":"<div><p>Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) test. RLCBR tests were conducted on eight subgrade soils at three moisture contents. Numerical studies were conducted by simulating the CBR test in the commercial package LS-DYNA® to understand the stress state under plunger loading concerning field conditions. A new model was proposed for the characterization of subgrade soils based on laboratory RLCBR tests and the FEM, considering the stress state experienced by subgrade soils in the field. The proposed model was validated using data from four other soils and showed good agreement. The study model showed a better predictive capacity for the low plastic subgrade soils than previously developed models. Practicing engineers can use the developed model for estimating the subgrade resilient modulus at the recommended stress state for mechanistic pavement design while understanding the soil’s load-deformation behavior.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"48 ","pages":"Article 101331"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical based model formulation for estimation of subgrade resilient modulus using the repeated load CBR test considering in situ state of stress\",\"authors\":\"Supratim Kaushik , Suman Kumar , Anjan Kumar Siddagangaiah\",\"doi\":\"10.1016/j.trgeo.2024.101331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) test. RLCBR tests were conducted on eight subgrade soils at three moisture contents. Numerical studies were conducted by simulating the CBR test in the commercial package LS-DYNA® to understand the stress state under plunger loading concerning field conditions. A new model was proposed for the characterization of subgrade soils based on laboratory RLCBR tests and the FEM, considering the stress state experienced by subgrade soils in the field. The proposed model was validated using data from four other soils and showed good agreement. The study model showed a better predictive capacity for the low plastic subgrade soils than previously developed models. Practicing engineers can use the developed model for estimating the subgrade resilient modulus at the recommended stress state for mechanistic pavement design while understanding the soil’s load-deformation behavior.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"48 \",\"pages\":\"Article 101331\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001521\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental and numerical based model formulation for estimation of subgrade resilient modulus using the repeated load CBR test considering in situ state of stress
Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) test. RLCBR tests were conducted on eight subgrade soils at three moisture contents. Numerical studies were conducted by simulating the CBR test in the commercial package LS-DYNA® to understand the stress state under plunger loading concerning field conditions. A new model was proposed for the characterization of subgrade soils based on laboratory RLCBR tests and the FEM, considering the stress state experienced by subgrade soils in the field. The proposed model was validated using data from four other soils and showed good agreement. The study model showed a better predictive capacity for the low plastic subgrade soils than previously developed models. Practicing engineers can use the developed model for estimating the subgrade resilient modulus at the recommended stress state for mechanistic pavement design while understanding the soil’s load-deformation behavior.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.