意大利那不勒斯 COVID-19 大流行封锁后的空气质量改善:比较分析(2018-2022 年)

Alessia Sannino, Riccardo Damiano, Salvatore Amoruso, Pasquale Castellano, Mariagrazia D’Emilio, Antonella Boselli
{"title":"意大利那不勒斯 COVID-19 大流行封锁后的空气质量改善:比较分析(2018-2022 年)","authors":"Alessia Sannino, Riccardo Damiano, Salvatore Amoruso, Pasquale Castellano, Mariagrazia D’Emilio, Antonella Boselli","doi":"10.3390/environments11080167","DOIUrl":null,"url":null,"abstract":"The pandemic lockdown of the year 2020 has been generally accompanied by an improvement in the air quality. Here, we report data on the effects of lockdown limitations on the air quality in the metropolitan area of Naples (Italy) by following the evolution of main atmospheric pollutants over a five-year period and comparing their concentrations in the pandemic year 2020 with the previous (2018 and 2019) and following (2021 and 2022) two years. In particular, NO2 and PM10 concentrations registered by representative air quality sampling station network and the columnar features of the aerosol characterized by a sun-photometer are considered. To avoid the possible influence of Saharan dust transport, which generally affects the observational area, the analysis has been limited to the days free from such events. Our findings evidence a tendency towards pre-pandemic conditions, notwithstanding some differences related to partial and temporary restrictions imposed even in the year 2021. For both near-surface NO2 and PM, the observations confirm a significant reduction induced by the lockdown in 2020, besides the seasonal changes, and a gradual tendency towards more typical values in the following years. Also, the columnar aerosol data clearly highlight a gradual recovery of typical conditions in 2021 and 2022, confirming a peculiar effect of the pandemic lockdown of the year 2020 on the atmospheric aerosol characteristics that evidences a striking predominance of the fine component.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Quality Improvement Following the COVID-19 Pandemic Lockdown in Naples, Italy: A Comparative Analysis (2018–2022)\",\"authors\":\"Alessia Sannino, Riccardo Damiano, Salvatore Amoruso, Pasquale Castellano, Mariagrazia D’Emilio, Antonella Boselli\",\"doi\":\"10.3390/environments11080167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pandemic lockdown of the year 2020 has been generally accompanied by an improvement in the air quality. Here, we report data on the effects of lockdown limitations on the air quality in the metropolitan area of Naples (Italy) by following the evolution of main atmospheric pollutants over a five-year period and comparing their concentrations in the pandemic year 2020 with the previous (2018 and 2019) and following (2021 and 2022) two years. In particular, NO2 and PM10 concentrations registered by representative air quality sampling station network and the columnar features of the aerosol characterized by a sun-photometer are considered. To avoid the possible influence of Saharan dust transport, which generally affects the observational area, the analysis has been limited to the days free from such events. Our findings evidence a tendency towards pre-pandemic conditions, notwithstanding some differences related to partial and temporary restrictions imposed even in the year 2021. For both near-surface NO2 and PM, the observations confirm a significant reduction induced by the lockdown in 2020, besides the seasonal changes, and a gradual tendency towards more typical values in the following years. Also, the columnar aerosol data clearly highlight a gradual recovery of typical conditions in 2021 and 2022, confirming a peculiar effect of the pandemic lockdown of the year 2020 on the atmospheric aerosol characteristics that evidences a striking predominance of the fine component.\",\"PeriodicalId\":11886,\"journal\":{\"name\":\"Environments\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/environments11080167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environments11080167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2020 年大流行封锁的同时,空气质量普遍得到改善。在此,我们报告了封锁限制对那不勒斯(意大利)大都市区空气质量影响的数据,方法是跟踪五年内主要大气污染物的变化,并比较 2020 大流行年与前一年(2018 年和 2019 年)和后两年(2021 年和 2022 年)的污染物浓度。其中,考虑了具有代表性的空气质量采样站网络记录的二氧化氮和可吸入颗粒物的浓度,以及用太阳光度计描述的气溶胶柱状特征。为了避免撒哈拉沙漠沙尘运输可能造成的影响(沙尘运输通常会影响观测区域),分析工作仅限于没有发生此类事件的日子。我们的研究结果表明,尽管与 2021 年实施的部分和临时限制措施有关的一些差异存在,但大流行前的状况仍趋于稳定。对于近地面的二氧化氮和可吸入颗粒物,观测结果证实,除了季节性变化外,2020 年的封锁也导致了二氧化氮和可吸入颗粒物的显著减少,并在随后几年逐渐趋向于更典型的数值。此外,柱状气溶胶数据清楚地表明,2021 年和 2022 年的典型条件逐渐恢复,这证实了 2020 年大流行病封锁对大气气溶胶特征的特殊影响,证明了微细成分的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air Quality Improvement Following the COVID-19 Pandemic Lockdown in Naples, Italy: A Comparative Analysis (2018–2022)
The pandemic lockdown of the year 2020 has been generally accompanied by an improvement in the air quality. Here, we report data on the effects of lockdown limitations on the air quality in the metropolitan area of Naples (Italy) by following the evolution of main atmospheric pollutants over a five-year period and comparing their concentrations in the pandemic year 2020 with the previous (2018 and 2019) and following (2021 and 2022) two years. In particular, NO2 and PM10 concentrations registered by representative air quality sampling station network and the columnar features of the aerosol characterized by a sun-photometer are considered. To avoid the possible influence of Saharan dust transport, which generally affects the observational area, the analysis has been limited to the days free from such events. Our findings evidence a tendency towards pre-pandemic conditions, notwithstanding some differences related to partial and temporary restrictions imposed even in the year 2021. For both near-surface NO2 and PM, the observations confirm a significant reduction induced by the lockdown in 2020, besides the seasonal changes, and a gradual tendency towards more typical values in the following years. Also, the columnar aerosol data clearly highlight a gradual recovery of typical conditions in 2021 and 2022, confirming a peculiar effect of the pandemic lockdown of the year 2020 on the atmospheric aerosol characteristics that evidences a striking predominance of the fine component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Ultimate Fate of Reactive Dyes Absorbed onto Polymer Beads: Feasibility and Optimization of Sorbent Bio-Regeneration Under Alternated Anaerobic–Aerobic Phases Initial Insights into Teleworking’s Effect on Air Quality in Madrid City Zinc Accumulation Pattern in Native Cortaderia nitida in High Andes (Ecuador) and Potential for Zinc Phytoremediation in Soil Steam Stripping for Recovery of Ammonia from Wastewater Using a High-Gravity Rotating Packed Bed Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1