{"title":"DG-GNR-DMG 垂直隧道场效应晶体管的器件和电路级性能评估","authors":"Zohming liana , Manas Ranjan Tripathy , Bijit Choudhuri , Brinda Bhowmick","doi":"10.1016/j.micrna.2024.207942","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents the comparative study of Graphene Nanoribbon (GNR) based channel Double Gate (DG) Dual Gate Material (DMG) Vertical tunnel Field Effect Transistor (VTFET) performance with all Silicon material Tunnel Field Effect Transistor. The two-dimensional (2D) material GNR has been proposed in the channel material to enhance the device performance due to its low bandgap, high mobility, and high saturation velocity. The proposed device's DC, RF, and circuit-level performance analysis has been carried out for the first time. GNR-based channel VTFET shows a better average subthreshold swing (SS<sub>AVG</sub>) of 16 mV/decade compared to Silicon Vertical Tunnel FET (36 mV/decade) at a drain voltage V<sub>DS</sub> = 0.5 V. The study of temperature effects on the DC parameters is also included along with the analog/RF FOMs for the proposed two structures. In addition, the performances are compared with other reported works; it is observed that DG-GNR-DMG-VTFET offers better results than Silicon (Si)-based VTFET and other said TFET work. Finally, circuit-level analysis has been done by designing inverter and ring oscillator circuits for the proposed structures, and performance is compared in these two devices. The market-available Silvaco ATLAS TCAD simulator has been used for device-level simulation. Further, circuit-level analysis has been carried out in the Cadence Virtuoso tool using a look-up table-based Verilog-A model.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"194 ","pages":"Article 207942"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device and circuit-level performance evaluation of DG-GNR-DMG vertical tunnel FET\",\"authors\":\"Zohming liana , Manas Ranjan Tripathy , Bijit Choudhuri , Brinda Bhowmick\",\"doi\":\"10.1016/j.micrna.2024.207942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents the comparative study of Graphene Nanoribbon (GNR) based channel Double Gate (DG) Dual Gate Material (DMG) Vertical tunnel Field Effect Transistor (VTFET) performance with all Silicon material Tunnel Field Effect Transistor. The two-dimensional (2D) material GNR has been proposed in the channel material to enhance the device performance due to its low bandgap, high mobility, and high saturation velocity. The proposed device's DC, RF, and circuit-level performance analysis has been carried out for the first time. GNR-based channel VTFET shows a better average subthreshold swing (SS<sub>AVG</sub>) of 16 mV/decade compared to Silicon Vertical Tunnel FET (36 mV/decade) at a drain voltage V<sub>DS</sub> = 0.5 V. The study of temperature effects on the DC parameters is also included along with the analog/RF FOMs for the proposed two structures. In addition, the performances are compared with other reported works; it is observed that DG-GNR-DMG-VTFET offers better results than Silicon (Si)-based VTFET and other said TFET work. Finally, circuit-level analysis has been done by designing inverter and ring oscillator circuits for the proposed structures, and performance is compared in these two devices. The market-available Silvaco ATLAS TCAD simulator has been used for device-level simulation. Further, circuit-level analysis has been carried out in the Cadence Virtuoso tool using a look-up table-based Verilog-A model.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"194 \",\"pages\":\"Article 207942\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324001912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Device and circuit-level performance evaluation of DG-GNR-DMG vertical tunnel FET
This work presents the comparative study of Graphene Nanoribbon (GNR) based channel Double Gate (DG) Dual Gate Material (DMG) Vertical tunnel Field Effect Transistor (VTFET) performance with all Silicon material Tunnel Field Effect Transistor. The two-dimensional (2D) material GNR has been proposed in the channel material to enhance the device performance due to its low bandgap, high mobility, and high saturation velocity. The proposed device's DC, RF, and circuit-level performance analysis has been carried out for the first time. GNR-based channel VTFET shows a better average subthreshold swing (SSAVG) of 16 mV/decade compared to Silicon Vertical Tunnel FET (36 mV/decade) at a drain voltage VDS = 0.5 V. The study of temperature effects on the DC parameters is also included along with the analog/RF FOMs for the proposed two structures. In addition, the performances are compared with other reported works; it is observed that DG-GNR-DMG-VTFET offers better results than Silicon (Si)-based VTFET and other said TFET work. Finally, circuit-level analysis has been done by designing inverter and ring oscillator circuits for the proposed structures, and performance is compared in these two devices. The market-available Silvaco ATLAS TCAD simulator has been used for device-level simulation. Further, circuit-level analysis has been carried out in the Cadence Virtuoso tool using a look-up table-based Verilog-A model.