利用适当的正交分解快速校准模型,预测乳腺癌对化疗的反应

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Science Pub Date : 2024-08-02 DOI:10.1016/j.jocs.2024.102400
Chase Christenson , Chengyue Wu , David A. Hormuth II , Casey E. Stowers , Megan LaMonica , Jingfei Ma , Gaiane M. Rauch , Thomas E. Yankeelov
{"title":"利用适当的正交分解快速校准模型,预测乳腺癌对化疗的反应","authors":"Chase Christenson ,&nbsp;Chengyue Wu ,&nbsp;David A. Hormuth II ,&nbsp;Casey E. Stowers ,&nbsp;Megan LaMonica ,&nbsp;Jingfei Ma ,&nbsp;Gaiane M. Rauch ,&nbsp;Thomas E. Yankeelov","doi":"10.1016/j.jocs.2024.102400","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102400"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast model calibration for predicting the response of breast cancer to chemotherapy using proper orthogonal decomposition\",\"authors\":\"Chase Christenson ,&nbsp;Chengyue Wu ,&nbsp;David A. Hormuth II ,&nbsp;Casey E. Stowers ,&nbsp;Megan LaMonica ,&nbsp;Jingfei Ma ,&nbsp;Gaiane M. Rauch ,&nbsp;Thomas E. Yankeelov\",\"doi\":\"10.1016/j.jocs.2024.102400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.</p></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"82 \",\"pages\":\"Article 102400\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324001935\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001935","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为预测性肿瘤治疗反应模型构建数字孪生模型的计算要求很高,这对其临床应用构成了实际障碍。在这项工作中,我们证明了适当的正交分解(通过该分解构建完整模型的低维表示)可用于显著减少根据磁共振成像(MRI)数据校准偏微分方程模型所需的计算时间,从而快速预测肿瘤生长和化疗反应。在建议的公式中,缩减基础基于每位患者自身的磁共振成像数据,并控制 "缩减阶次模型 "的整体大小。以完整模型为参考,我们验证了减阶数学模型能准确预测 50 名接受标准护理新辅助化疗的三阴性乳腺癌患者的反应。在预测整个模型族的肿瘤体积和细胞度变化时,全阶模型和缩减阶模型之间的一致性相关系数为 0.986 ± 0.012(平均值 ± 标准差),相应的局部误差中位数(四分位间范围)为 4.36 %(1.22 %,15.04 %)。采用简化框架后,估计参数和预测反应的总时间显著缩短。具体来说,与非机械耦合模型的全阶模型相比,缩减阶次模型将我们的校准速度提高了 378.4 ± 279.8 倍(平均值 ± 标准偏差)。在计算资源有限的情况下,计算时间的大幅缩短可直接帮助实现数字孪生的实际构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast model calibration for predicting the response of breast cancer to chemotherapy using proper orthogonal decomposition

Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
期刊最新文献
Editorial Board perms: Likelihood-free estimation of marginal likelihoods for binary response data in Python and R On-the-fly mathematical formulation for estimating people flow from elevator load data in smart building virtual sensing platforms Enhancing multi-omics data classification with relative expression analysis and decision trees Identifying influential nodes in complex networks through the k-shell index and neighborhood information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1