Jinmei Wei , Zongjun Li , Jinyan Kuang , Zikang Yan , Li Wang , Ying Lin , Jin Du , Ke Li , Yuanliang Wang , Li Yang
{"title":"竹笋发酵过程中微生物群落演替和挥发性化合物的变化","authors":"Jinmei Wei , Zongjun Li , Jinyan Kuang , Zikang Yan , Li Wang , Ying Lin , Jin Du , Ke Li , Yuanliang Wang , Li Yang","doi":"10.1016/j.fm.2024.104618","DOIUrl":null,"url":null,"abstract":"<div><p>Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of <em>Phyllostachys purpurea</em> (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography–mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified <em>Lactobacillus</em> and <em>Candida</em> as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of <em>Lactococcus</em> to <em>Lactobacillus</em> and <em>Pediococcus</em>, whereas soluble proteins facilitated fungal succession from <em>Candida</em> to <em>Kazachstania</em> and <em>Issatchenkia</em>. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.</p></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"124 ","pages":"Article 104618"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial community succession and changes of volatile compounds in the fermentation process of bamboo shoots\",\"authors\":\"Jinmei Wei , Zongjun Li , Jinyan Kuang , Zikang Yan , Li Wang , Ying Lin , Jin Du , Ke Li , Yuanliang Wang , Li Yang\",\"doi\":\"10.1016/j.fm.2024.104618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of <em>Phyllostachys purpurea</em> (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography–mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified <em>Lactobacillus</em> and <em>Candida</em> as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of <em>Lactococcus</em> to <em>Lactobacillus</em> and <em>Pediococcus</em>, whereas soluble proteins facilitated fungal succession from <em>Candida</em> to <em>Kazachstania</em> and <em>Issatchenkia</em>. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.</p></div>\",\"PeriodicalId\":12399,\"journal\":{\"name\":\"Food microbiology\",\"volume\":\"124 \",\"pages\":\"Article 104618\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740002024001564\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002024001564","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Microbial community succession and changes of volatile compounds in the fermentation process of bamboo shoots
Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of Phyllostachys purpurea (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography–mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified Lactobacillus and Candida as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of Lactococcus to Lactobacillus and Pediococcus, whereas soluble proteins facilitated fungal succession from Candida to Kazachstania and Issatchenkia. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.