氧化铝钝化层对铜铟镓硒太阳能电池性能的多重影响

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-08-05 DOI:10.1002/admi.202301100
Yukiko Kamikawa, Marco Nardone, Hajime Shibata, Jiro Nishinaga, Shogo Ishizuka
{"title":"氧化铝钝化层对铜铟镓硒太阳能电池性能的多重影响","authors":"Yukiko Kamikawa,&nbsp;Marco Nardone,&nbsp;Hajime Shibata,&nbsp;Jiro Nishinaga,&nbsp;Shogo Ishizuka","doi":"10.1002/admi.202301100","DOIUrl":null,"url":null,"abstract":"<p>In this study, the origins of efficiency gains in Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells are investigated by introducing an Al<sub>2</sub>O<sub>3</sub> passivation layer in terms of the oxidation condition of Mo back contact, alkali-metal diffusion, minority carrier lifetimes (<i>τ</i>), and charge conditions. The study reveals that introduction of an Al<sub>2</sub>O<sub>3</sub> back-contact passivation layer into solar cells yields multiple impacts. Al<sub>2</sub>O<sub>3</sub> deposition enhances the oxidation of the Mo back contacts, increasing Na solubility in Mo and Na diffusion from Mo into the CIGS layer, thereby modifying the metastable properties of CIGS. The charge condition at the CIGS/Al<sub>2</sub>O<sub>3</sub> interface is not fixed negative charge but variable, dependent on whether electrons or holes are supplied. During solar cell operation, the interfacial charge condition is expected to be neutral or positive for Al<sub>2</sub>O<sub>3</sub> grown using plasma or thermal atomic layer deposition techniques, respectively. Moreover, the mechanical peeling off of CIGS from Mo back contact enhanced <i>τ</i> in a similar way as with the insertion of Al<sub>2</sub>O<sub>3</sub>. Based on this study, the enhancement of alkali metal supply and the removal of direct contact of CIGS to the metal contact (Mo) can play crucial roles in improving the performance of CIGS solar cell.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 26","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202301100","citationCount":"0","resultStr":"{\"title\":\"Multiple Impacts of the Aluminum Oxide Passivation Layer on the Properties OF Cu(In,Ga)Se2 Solar Cells\",\"authors\":\"Yukiko Kamikawa,&nbsp;Marco Nardone,&nbsp;Hajime Shibata,&nbsp;Jiro Nishinaga,&nbsp;Shogo Ishizuka\",\"doi\":\"10.1002/admi.202301100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the origins of efficiency gains in Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells are investigated by introducing an Al<sub>2</sub>O<sub>3</sub> passivation layer in terms of the oxidation condition of Mo back contact, alkali-metal diffusion, minority carrier lifetimes (<i>τ</i>), and charge conditions. The study reveals that introduction of an Al<sub>2</sub>O<sub>3</sub> back-contact passivation layer into solar cells yields multiple impacts. Al<sub>2</sub>O<sub>3</sub> deposition enhances the oxidation of the Mo back contacts, increasing Na solubility in Mo and Na diffusion from Mo into the CIGS layer, thereby modifying the metastable properties of CIGS. The charge condition at the CIGS/Al<sub>2</sub>O<sub>3</sub> interface is not fixed negative charge but variable, dependent on whether electrons or holes are supplied. During solar cell operation, the interfacial charge condition is expected to be neutral or positive for Al<sub>2</sub>O<sub>3</sub> grown using plasma or thermal atomic layer deposition techniques, respectively. Moreover, the mechanical peeling off of CIGS from Mo back contact enhanced <i>τ</i> in a similar way as with the insertion of Al<sub>2</sub>O<sub>3</sub>. Based on this study, the enhancement of alkali metal supply and the removal of direct contact of CIGS to the metal contact (Mo) can play crucial roles in improving the performance of CIGS solar cell.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 26\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202301100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202301100\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202301100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过引入 Al2O3 钝化层,从 Mo 背接触氧化条件、碱金属扩散、少数载流子寿命 (τ) 和充电条件等方面研究了 Cu(In,Ga)Se2(CIGS)太阳能电池效率提高的原因。研究表明,在太阳能电池中引入 Al2O3 背接触钝化层会产生多重影响。Al2O3 沉积增强了 Mo 背接触的氧化,提高了 Na 在 Mo 中的溶解度以及 Na 从 Mo 向 CIGS 层的扩散,从而改变了 CIGS 的逸散特性。CIGS/Al2O3 界面的电荷条件不是固定的负电荷,而是可变的,取决于提供的是电子还是空穴。在太阳能电池运行期间,采用等离子体或热原子层沉积技术生长的 Al2O3 的界面电荷条件预计将分别为中性或正性。此外,CIGS 与 Mo 背接触的机械剥离增强了 τ,其方式与插入 Al2O3 相似。根据这项研究,增加碱金属的供应量和消除 CIGS 与金属接触面(Mo)的直接接触对提高 CIGS 太阳能电池的性能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Impacts of the Aluminum Oxide Passivation Layer on the Properties OF Cu(In,Ga)Se2 Solar Cells

In this study, the origins of efficiency gains in Cu(In,Ga)Se2 (CIGS) solar cells are investigated by introducing an Al2O3 passivation layer in terms of the oxidation condition of Mo back contact, alkali-metal diffusion, minority carrier lifetimes (τ), and charge conditions. The study reveals that introduction of an Al2O3 back-contact passivation layer into solar cells yields multiple impacts. Al2O3 deposition enhances the oxidation of the Mo back contacts, increasing Na solubility in Mo and Na diffusion from Mo into the CIGS layer, thereby modifying the metastable properties of CIGS. The charge condition at the CIGS/Al2O3 interface is not fixed negative charge but variable, dependent on whether electrons or holes are supplied. During solar cell operation, the interfacial charge condition is expected to be neutral or positive for Al2O3 grown using plasma or thermal atomic layer deposition techniques, respectively. Moreover, the mechanical peeling off of CIGS from Mo back contact enhanced τ in a similar way as with the insertion of Al2O3. Based on this study, the enhancement of alkali metal supply and the removal of direct contact of CIGS to the metal contact (Mo) can play crucial roles in improving the performance of CIGS solar cell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Biphilic Functional Surfaces for Frost Prevention and Efficient Active Defrosting (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 31/2024) Methodology for Liquid Foam Templating of Hydrogel Foams: A Rheological and Tomographic Characterization (Adv. Mater. Interfaces 31/2024) Controlled Functionalization Strategy of Proteins Preserves their Structural Integrity While Binding to Nanocarriers (Adv. Mater. Interfaces 30/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1