PerQueue:管理复杂的动态工作流

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-08-08 DOI:10.1039/D4DD00134F
Benjamin Heckscher Sjølin, William Sandholt Hansen, Armando Antonio Morin-Martinez, Martin Hoffmann Petersen, Laura Hannemose Rieger, Tejs Vegge, Juan Maria García-Lastra and Ivano E. Castelli
{"title":"PerQueue:管理复杂的动态工作流","authors":"Benjamin Heckscher Sjølin, William Sandholt Hansen, Armando Antonio Morin-Martinez, Martin Hoffmann Petersen, Laura Hannemose Rieger, Tejs Vegge, Juan Maria García-Lastra and Ivano E. Castelli","doi":"10.1039/D4DD00134F","DOIUrl":null,"url":null,"abstract":"<p >Workflow managers play a critical role in the efficient planning and execution of complex workloads. A handful of these already exist within the world of computational materials discovery, but their dynamic capabilities are somewhat lacking. The PerQueue workflow manager is the answer to this need. By utilizing modular and dynamic building blocks to define a workflow explicitly before starting, PerQueue can give a better overview of the workflow while allowing full flexibility and high dynamism. To exemplify its usage, we present four use cases at different scales within computational materials discovery. These encapsulate high-throughput screening with Density Functional Theory, using active learning to train a Machine-Learning Interatomic Potential with Molecular Dynamics and reusing this potential for kinetic Monte Carlo simulations of extended systems. Lastly, it is used for an active-learning-accelerated image segmentation procedure with a human-in-the-loop.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1832-1841"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00134f?page=search","citationCount":"0","resultStr":"{\"title\":\"PerQueue: managing complex and dynamic workflows†\",\"authors\":\"Benjamin Heckscher Sjølin, William Sandholt Hansen, Armando Antonio Morin-Martinez, Martin Hoffmann Petersen, Laura Hannemose Rieger, Tejs Vegge, Juan Maria García-Lastra and Ivano E. Castelli\",\"doi\":\"10.1039/D4DD00134F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Workflow managers play a critical role in the efficient planning and execution of complex workloads. A handful of these already exist within the world of computational materials discovery, but their dynamic capabilities are somewhat lacking. The PerQueue workflow manager is the answer to this need. By utilizing modular and dynamic building blocks to define a workflow explicitly before starting, PerQueue can give a better overview of the workflow while allowing full flexibility and high dynamism. To exemplify its usage, we present four use cases at different scales within computational materials discovery. These encapsulate high-throughput screening with Density Functional Theory, using active learning to train a Machine-Learning Interatomic Potential with Molecular Dynamics and reusing this potential for kinetic Monte Carlo simulations of extended systems. Lastly, it is used for an active-learning-accelerated image segmentation procedure with a human-in-the-loop.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 1832-1841\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00134f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00134f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00134f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工作流管理器在高效规划和执行复杂工作负载方面发挥着至关重要的作用。在计算材料发现领域,已经存在一些这样的工作流管理器,但它们的动态功能略显不足。PerQueue 工作流管理器正是对这一需求的回应。PerQueue 利用模块化动态构件在开始之前明确定义工作流,可以更好地概述工作流,同时具有充分的灵活性和高度的动态性。为了举例说明其用法,我们介绍了计算材料发现中不同规模的四个用例。这些案例包括利用密度泛函理论进行高通量筛选、利用主动学习来训练分子动力学的机器学习原子间位势,以及将该位势重新用于扩展系统的动力学蒙特卡洛模拟。最后,它还被用于主动学习加速图像分割程序,并将人纳入环路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PerQueue: managing complex and dynamic workflows†

Workflow managers play a critical role in the efficient planning and execution of complex workloads. A handful of these already exist within the world of computational materials discovery, but their dynamic capabilities are somewhat lacking. The PerQueue workflow manager is the answer to this need. By utilizing modular and dynamic building blocks to define a workflow explicitly before starting, PerQueue can give a better overview of the workflow while allowing full flexibility and high dynamism. To exemplify its usage, we present four use cases at different scales within computational materials discovery. These encapsulate high-throughput screening with Density Functional Theory, using active learning to train a Machine-Learning Interatomic Potential with Molecular Dynamics and reusing this potential for kinetic Monte Carlo simulations of extended systems. Lastly, it is used for an active-learning-accelerated image segmentation procedure with a human-in-the-loop.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1