TiB2/γ-Fe(1 1 1) 和 TiB2/Ni(1 1 1) 界面的电子特性研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-07-29 DOI:10.1016/j.commatsci.2024.113261
{"title":"TiB2/γ-Fe(1 1 1) 和 TiB2/Ni(1 1 1) 界面的电子特性研究","authors":"","doi":"10.1016/j.commatsci.2024.113261","DOIUrl":null,"url":null,"abstract":"<div><p>In order to explore the interfacial bonding mechanisms of TiB<sub>2</sub>/γ-Fe and TiB<sub>2</sub>/Ni in the composites, the adhesion work, electronic properties and fracture toughness of the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) and TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interfaces were investigated using first-principles calculations. The results reveal that the surface energy of the TiB<sub>2</sub> surface at the B-terminated is the smallest and the constructed TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) interface has the largest adhesive energy. The electronic structures of the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) and TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interfaces reveal that bonding at the interfaces is provided by the B-2p orbitals with the Fe-3d and Ni-3d orbitals, respectively, and that the formation of Fe-B and Ni-B covalent/ionic bonds is the main source of bonding and interaction. The bonding and strength of Fe-B in the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface is stronger than that in the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interface, which is due to the higher charge density accumulation of Fe atoms at the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface. Using Griffith’s theory, the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface is inferred to have the strongest fracture toughness. This study suggests that the chemical bonding stronger Fe-B bonds result in a high bond strength and a more stable interfacial structure at the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) interface, leading to better resistance to cracking in practice.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the electronic properties of TiB2/γ-Fe(1 1 1) and TiB2/Ni(1 1 1) interfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to explore the interfacial bonding mechanisms of TiB<sub>2</sub>/γ-Fe and TiB<sub>2</sub>/Ni in the composites, the adhesion work, electronic properties and fracture toughness of the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) and TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interfaces were investigated using first-principles calculations. The results reveal that the surface energy of the TiB<sub>2</sub> surface at the B-terminated is the smallest and the constructed TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) interface has the largest adhesive energy. The electronic structures of the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) and TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interfaces reveal that bonding at the interfaces is provided by the B-2p orbitals with the Fe-3d and Ni-3d orbitals, respectively, and that the formation of Fe-B and Ni-B covalent/ionic bonds is the main source of bonding and interaction. The bonding and strength of Fe-B in the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface is stronger than that in the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/Ni(1<!--> <!-->1<!--> <!-->1) interface, which is due to the higher charge density accumulation of Fe atoms at the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface. Using Griffith’s theory, the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/γ-Fe(1<!--> <!-->1<!--> <!-->1) interface is inferred to have the strongest fracture toughness. This study suggests that the chemical bonding stronger Fe-B bonds result in a high bond strength and a more stable interfacial structure at the TiB<sub>2</sub>(0<!--> <!-->0<!--> <!-->1)/ γ-Fe(1<!--> <!-->1<!--> <!-->1) interface, leading to better resistance to cracking in practice.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004828\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004828","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了探索复合材料中TiB/γ-Fe和TiB/Ni的界面结合机制,利用第一性原理计算研究了TiB(001)/γ-Fe(111)和TiB(001)/Ni(111)界面的粘附功、电子特性和断裂韧性。结果表明,B 端 TiB 表面的表面能最小,而构建的 TiB(001)/γ-Fe(111) 界面的粘合能最大。TiB(001)/γ-Fe(111)和TiB(001)/Ni(111)界面的电子结构显示,界面上的成键分别由B-2p轨道与Fe-3d和Ni-3d轨道提供,Fe-B和Ni-B共价键/离子键的形成是成键和相互作用的主要来源。TiB(001)/γ-Fe(111)界面中的Fe-B成键和强度比TiB(001)/Ni(111)界面中的Fe-B成键和强度强,这是由于TiB(001)/γ-Fe(111)界面中Fe原子的电荷密度积累较高。根据格里菲斯理论,可以推断 TiB(001)/γ-Fe(111) 界面具有最强的断裂韧性。这项研究表明,化学键结合力更强的 Fe-B 键使 TiB(001)/γ-Fe(111) 界面具有较高的结合强度和更稳定的界面结构,从而在实际应用中具有更好的抗开裂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the electronic properties of TiB2/γ-Fe(1 1 1) and TiB2/Ni(1 1 1) interfaces

In order to explore the interfacial bonding mechanisms of TiB2/γ-Fe and TiB2/Ni in the composites, the adhesion work, electronic properties and fracture toughness of the TiB2(0 0 1)/ γ-Fe(1 1 1) and TiB2(0 0 1)/Ni(1 1 1) interfaces were investigated using first-principles calculations. The results reveal that the surface energy of the TiB2 surface at the B-terminated is the smallest and the constructed TiB2(0 0 1)/ γ-Fe(1 1 1) interface has the largest adhesive energy. The electronic structures of the TiB2(0 0 1)/γ-Fe(1 1 1) and TiB2(0 0 1)/Ni(1 1 1) interfaces reveal that bonding at the interfaces is provided by the B-2p orbitals with the Fe-3d and Ni-3d orbitals, respectively, and that the formation of Fe-B and Ni-B covalent/ionic bonds is the main source of bonding and interaction. The bonding and strength of Fe-B in the TiB2(0 0 1)/γ-Fe(1 1 1) interface is stronger than that in the TiB2(0 0 1)/Ni(1 1 1) interface, which is due to the higher charge density accumulation of Fe atoms at the TiB2(0 0 1)/γ-Fe(1 1 1) interface. Using Griffith’s theory, the TiB2(0 0 1)/γ-Fe(1 1 1) interface is inferred to have the strongest fracture toughness. This study suggests that the chemical bonding stronger Fe-B bonds result in a high bond strength and a more stable interfacial structure at the TiB2(0 0 1)/ γ-Fe(1 1 1) interface, leading to better resistance to cracking in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1