了解辐照钨的 RBS/c 光谱:计算研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-07-29 DOI:10.1016/j.commatsci.2024.113241
{"title":"了解辐照钨的 RBS/c 光谱:计算研究","authors":"","doi":"10.1016/j.commatsci.2024.113241","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624004622/pdfft?md5=44e8212e953c809979d5537cac0f38d6&pid=1-s2.0-S0927025624004622-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the RBS/c spectra of irradiated tungsten: A computational study\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004622/pdfft?md5=44e8212e953c809979d5537cac0f38d6&pid=1-s2.0-S0927025624004622-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004622\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004622","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解和识别辐照材料的缺陷结构对于了解材料的特性至关重要。目前有许多检测缺陷的实验技术,其中之一是通道模式下的卢瑟福背散射光谱法。这种方法可以揭示缺陷造成的无序状态与深度的函数关系。然而,为了了解导致所测无序度的潜在缺陷结构,我们需要了解不同的缺陷形态如何影响实验信号。在本文中,我们通过计算研究了钨中所有常见的辐照诱导缺陷结构对信号的影响。我们发现,开放体积缺陷、空位和空洞几乎没有产率,而间隙和位错环则有显著的产率。我们还发现,位错环相对于 RBS/c 沟道方向的取向对结果影响很大,有些环几乎看不见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the RBS/c spectra of irradiated tungsten: A computational study

Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1