单晶体和轻质多组分合金的动态冲击响应的 Ab initio 模拟

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-07-27 DOI:10.1016/j.commatsci.2024.113268
{"title":"单晶体和轻质多组分合金的动态冲击响应的 Ab initio 模拟","authors":"","doi":"10.1016/j.commatsci.2024.113268","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic response of shock wave impact on single crystal aluminium and lightweight multicomponent alloy Al-Cu-Li-Mg is simulated by using the combination of Ab initio Molecular Dynamics (AIMD) and Multi-Scale Shock Technique (MSST), with the analysis carried out at the atomic/electronic levels. The simulation is verified by comparing the particle velocity of single crystal obtained in this work with the data in literature. The shock compression process not only involves the migration of atoms, but also is related to electronic transition. Two stages could be found in the shock compression process: oscillatory compression of the crystal cell and oscillatory migration of the atoms. The crystal structure of the multicomponent alloy could be disordered even at low shock speed, due to the difference in the ability to migrate between different kinds of atoms. As the sample is shock-compressed, the contribution proportion of crystal orbitals shows a sharp decrease for D orbital, while it increases significantly for S orbital and P orbital. The electron structure shows a quicker response to the shock wave compression process than the crystal structure. The orbital contribution from P orbital of the crystal is mainly due to the P orbital of Al atoms, while the orbital contribution from D orbital of the crystal is mainly due to the D orbital of Cu atoms. Total Density of States (TDOS) is mainly contributed by the Projected Density of State (PDOS) of Cu atoms in the occupied state of energy levels, while it is close to the PDOS of Al atoms in the non-occupied state of energy levels.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio simulation of the dynamic shock response of single crystal and lightweight multicomponent alloy\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic response of shock wave impact on single crystal aluminium and lightweight multicomponent alloy Al-Cu-Li-Mg is simulated by using the combination of Ab initio Molecular Dynamics (AIMD) and Multi-Scale Shock Technique (MSST), with the analysis carried out at the atomic/electronic levels. The simulation is verified by comparing the particle velocity of single crystal obtained in this work with the data in literature. The shock compression process not only involves the migration of atoms, but also is related to electronic transition. Two stages could be found in the shock compression process: oscillatory compression of the crystal cell and oscillatory migration of the atoms. The crystal structure of the multicomponent alloy could be disordered even at low shock speed, due to the difference in the ability to migrate between different kinds of atoms. As the sample is shock-compressed, the contribution proportion of crystal orbitals shows a sharp decrease for D orbital, while it increases significantly for S orbital and P orbital. The electron structure shows a quicker response to the shock wave compression process than the crystal structure. The orbital contribution from P orbital of the crystal is mainly due to the P orbital of Al atoms, while the orbital contribution from D orbital of the crystal is mainly due to the D orbital of Cu atoms. Total Density of States (TDOS) is mainly contributed by the Projected Density of State (PDOS) of Cu atoms in the occupied state of energy levels, while it is close to the PDOS of Al atoms in the non-occupied state of energy levels.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004890\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004890","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过结合使用 Ab initio 分子动力学(AIMD)和多尺度冲击技术(MSST),模拟了冲击波对单晶铝和轻质多组分合金铝-铜-锂-镁的动态响应,并在原子/电子水平上进行了分析。这项工作中获得的单晶粒子速度与文献数据进行了比较,从而验证了模拟结果。冲击压缩过程不仅涉及原子的迁移,还与电子转变有关。冲击压缩过程分为两个阶段:晶胞的振荡压缩和原子的振荡迁移。由于不同种类原子的迁移能力不同,即使在低冲击速度下,多组分合金的晶体结构也可能是无序的。随着样品受到冲击压缩,晶体轨道中 D 轨道的贡献比例急剧下降,而 S 轨道和 P 轨道的贡献比例则显著增加。与晶体结构相比,电子结构对冲击波压缩过程的反应更快。晶体中 P 轨道的贡献主要来自于 Al 原子的 P 轨道,而晶体中 D 轨道的贡献主要来自于 Cu 原子的 D 轨道。总态密度(TDOS)主要由处于能级占位状态的铜原子的投影态密度(PDOS)贡献,而接近于处于非能级占位状态的铝原子的投影态密度(PDOS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ab initio simulation of the dynamic shock response of single crystal and lightweight multicomponent alloy

The dynamic response of shock wave impact on single crystal aluminium and lightweight multicomponent alloy Al-Cu-Li-Mg is simulated by using the combination of Ab initio Molecular Dynamics (AIMD) and Multi-Scale Shock Technique (MSST), with the analysis carried out at the atomic/electronic levels. The simulation is verified by comparing the particle velocity of single crystal obtained in this work with the data in literature. The shock compression process not only involves the migration of atoms, but also is related to electronic transition. Two stages could be found in the shock compression process: oscillatory compression of the crystal cell and oscillatory migration of the atoms. The crystal structure of the multicomponent alloy could be disordered even at low shock speed, due to the difference in the ability to migrate between different kinds of atoms. As the sample is shock-compressed, the contribution proportion of crystal orbitals shows a sharp decrease for D orbital, while it increases significantly for S orbital and P orbital. The electron structure shows a quicker response to the shock wave compression process than the crystal structure. The orbital contribution from P orbital of the crystal is mainly due to the P orbital of Al atoms, while the orbital contribution from D orbital of the crystal is mainly due to the D orbital of Cu atoms. Total Density of States (TDOS) is mainly contributed by the Projected Density of State (PDOS) of Cu atoms in the occupied state of energy levels, while it is close to the PDOS of Al atoms in the non-occupied state of energy levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1