利用机器学习直接识别实验结果参数的方法 - FRP 高度非线性变形行为的实际应用

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-06 DOI:10.1016/j.commatsci.2024.113274
Johannes Gerritzen, Andreas Hornig, Peter Winkler, Maik Gude
{"title":"利用机器学习直接识别实验结果参数的方法 - FRP 高度非线性变形行为的实际应用","authors":"Johannes Gerritzen, Andreas Hornig, Peter Winkler, Maik Gude","doi":"10.1016/j.commatsci.2024.113274","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP\",\"authors\":\"Johannes Gerritzen, Andreas Hornig, Peter Winkler, Maik Gude\",\"doi\":\"10.1016/j.commatsci.2024.113274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.commatsci.2024.113274\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们展示了如何利用机器学习(ML)技术将知识和时间密集型的材料参数识别过程外部化。我们以最近针对玻璃纤维增强聚丙烯(GF/PP)非线性剪切行为的数据驱动材料模型(Gerritzen,2022 年)为例进行了说明。基于卷积神经网络(CNN)的模型架构经过训练,可根据输入的应力-应变曲线预测材料建模参数。通过超参数优化(HPO)确定最佳模型架构和训练设置。在整个训练和 HPO 过程中,只使用使用目标材料模型生成的虚拟数据。最终的 CNN 能够根据实验应力-应变曲线计算出模型参数组合,从而使实验曲线与相关模型曲线达到极佳的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP
In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1