研究金属玻璃基复合材料应变分散的力学原理

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-07-28 DOI:10.1016/j.commatsci.2024.113253
{"title":"研究金属玻璃基复合材料应变分散的力学原理","authors":"","doi":"10.1016/j.commatsci.2024.113253","DOIUrl":null,"url":null,"abstract":"<div><p>Metallic glass matrix composites (MGMCs) represent a promising avenue for enhancing the ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase to aid in the delocalization of strain. This work seeks to understand the mechanisms underlying strain delocalization in MGMCs to guide further advancements in this class of material. Employing a mesoscale shear transformation zone (STZ) dynamics model, we investigate how variation in dendritic microstructural sizes and spacings impact the shear banding behaviors of MGMCs subjected to uniaxial tensile loading. Statistical analysis of shear banding characteristics reveals that the competition of shear band nucleation and propagation rates can encourage strain delocalization in MGMCs. The introduction of a crystalline dendritic structure into the amorphous matrix increases the number of shear band nucleation events while reducing shear band propagation rates. Furthermore, reducing dendrite sizes leads to greater strain delocalization among more shear bands and delays the onset of run-away shear bands, resulting in lower overall shear band growth rates. Therefore, this study sheds light on the crucial role of dendritic microstructural sizes in influencing shear banding characteristics and strain delocalization in MGMCs, offering valuable insights to inform the design and development of advanced materials with superior mechanical properties.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the mechanics responsible for strain delocalization in metallic glass matrix composites\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metallic glass matrix composites (MGMCs) represent a promising avenue for enhancing the ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase to aid in the delocalization of strain. This work seeks to understand the mechanisms underlying strain delocalization in MGMCs to guide further advancements in this class of material. Employing a mesoscale shear transformation zone (STZ) dynamics model, we investigate how variation in dendritic microstructural sizes and spacings impact the shear banding behaviors of MGMCs subjected to uniaxial tensile loading. Statistical analysis of shear banding characteristics reveals that the competition of shear band nucleation and propagation rates can encourage strain delocalization in MGMCs. The introduction of a crystalline dendritic structure into the amorphous matrix increases the number of shear band nucleation events while reducing shear band propagation rates. Furthermore, reducing dendrite sizes leads to greater strain delocalization among more shear bands and delays the onset of run-away shear bands, resulting in lower overall shear band growth rates. Therefore, this study sheds light on the crucial role of dendritic microstructural sizes in influencing shear banding characteristics and strain delocalization in MGMCs, offering valuable insights to inform the design and development of advanced materials with superior mechanical properties.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004749\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属玻璃基复合材料(MGMCs)是增强整体金属玻璃延展性的一个前景广阔的途径。这些复合材料利用二次结晶相来帮助应变分散。这项研究旨在了解 MGMCs 中应变分散的基本机制,以指导这类材料的进一步发展。我们采用中尺度剪切转换区(STZ)动力学模型,研究了树枝状微结构尺寸和间距的变化如何影响承受单轴拉伸载荷的 MGMC 的剪切带行为。对剪切带特征的统计分析显示,剪切带成核和传播速度的竞争会促进 MGMC 的应变分散。在无定形基体中引入结晶树枝状结构会增加剪切带成核事件的数量,同时降低剪切带的传播速度。此外,减小树枝状结构的尺寸会导致更多剪切带之间的应变分散,并推迟失控剪切带的出现,从而降低整体剪切带增长率。因此,本研究揭示了树枝状微结构尺寸在影响 MGMC 的剪切带特性和应变分散方面的关键作用,为设计和开发具有优异机械性能的先进材料提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining the mechanics responsible for strain delocalization in metallic glass matrix composites

Metallic glass matrix composites (MGMCs) represent a promising avenue for enhancing the ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase to aid in the delocalization of strain. This work seeks to understand the mechanisms underlying strain delocalization in MGMCs to guide further advancements in this class of material. Employing a mesoscale shear transformation zone (STZ) dynamics model, we investigate how variation in dendritic microstructural sizes and spacings impact the shear banding behaviors of MGMCs subjected to uniaxial tensile loading. Statistical analysis of shear banding characteristics reveals that the competition of shear band nucleation and propagation rates can encourage strain delocalization in MGMCs. The introduction of a crystalline dendritic structure into the amorphous matrix increases the number of shear band nucleation events while reducing shear band propagation rates. Furthermore, reducing dendrite sizes leads to greater strain delocalization among more shear bands and delays the onset of run-away shear bands, resulting in lower overall shear band growth rates. Therefore, this study sheds light on the crucial role of dendritic microstructural sizes in influencing shear banding characteristics and strain delocalization in MGMCs, offering valuable insights to inform the design and development of advanced materials with superior mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1