Yun Li , Xu Gao , Junzheng Gao , Zhimei Yang , Min Gong , Mingmin Huang , Yao Ma , Tian Yu
{"title":"退火处理对室温和低温重离子辐照下 4H-SiC SBD 性能的影响","authors":"Yun Li , Xu Gao , Junzheng Gao , Zhimei Yang , Min Gong , Mingmin Huang , Yao Ma , Tian Yu","doi":"10.1016/j.micrna.2024.207945","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of the annealing treatment on the performance of commercial 4H–SiC Schottky barrier diodes (SBDs) subjected to heavy ion irradiation under room temperature (RT) and low temperature (LT) are presented. Experimental results confirm that annealing treatment effectively eliminates defects and interface states caused by heavy ion irradiation, particularly for 4H–SiC SBD under LT irradiation. Increasing the annealing temperature leads to the slight improvement in forward current, leakage current and breakdown voltage. However, the annealing process may result in the formation of Ti and Si compounds at the interface between the Schottky metal and SiC, as well as a significant number of vacancies. Combined with Technology Computer Aided Design (TCAD) simulations, it is concluded that the interface trap charge concentrations exceeding 1 × 10<sup>12</sup> cm<sup>−2</sup> significantly impact the breakdown characteristics of 4H–SiC SBDs.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"194 ","pages":"Article 207945"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of annealing treatment on performance of 4H–SiC SBD irradiated by heavy ions under room temperature and low temperature\",\"authors\":\"Yun Li , Xu Gao , Junzheng Gao , Zhimei Yang , Min Gong , Mingmin Huang , Yao Ma , Tian Yu\",\"doi\":\"10.1016/j.micrna.2024.207945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of the annealing treatment on the performance of commercial 4H–SiC Schottky barrier diodes (SBDs) subjected to heavy ion irradiation under room temperature (RT) and low temperature (LT) are presented. Experimental results confirm that annealing treatment effectively eliminates defects and interface states caused by heavy ion irradiation, particularly for 4H–SiC SBD under LT irradiation. Increasing the annealing temperature leads to the slight improvement in forward current, leakage current and breakdown voltage. However, the annealing process may result in the formation of Ti and Si compounds at the interface between the Schottky metal and SiC, as well as a significant number of vacancies. Combined with Technology Computer Aided Design (TCAD) simulations, it is concluded that the interface trap charge concentrations exceeding 1 × 10<sup>12</sup> cm<sup>−2</sup> significantly impact the breakdown characteristics of 4H–SiC SBDs.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"194 \",\"pages\":\"Article 207945\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324001948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了退火处理对室温(RT)和低温(LT)重离子辐照下商用 4H-SiC 肖特基势垒二极管(SBD)性能的影响。实验结果证实,退火处理能有效消除重离子辐照造成的缺陷和界面态,尤其是在低温辐照下的 4H-SiC SBD。提高退火温度可略微改善正向电流、漏电流和击穿电压。但是,退火过程可能会在肖特基金属和碳化硅之间的界面上形成 Ti 和 Si 化合物以及大量空位。结合技术计算机辅助设计(TCAD)模拟得出的结论是,界面陷阱电荷浓度超过 1 × 1012 cm-2 会严重影响 4H-SiC SBD 的击穿特性。
Influence of annealing treatment on performance of 4H–SiC SBD irradiated by heavy ions under room temperature and low temperature
The influence of the annealing treatment on the performance of commercial 4H–SiC Schottky barrier diodes (SBDs) subjected to heavy ion irradiation under room temperature (RT) and low temperature (LT) are presented. Experimental results confirm that annealing treatment effectively eliminates defects and interface states caused by heavy ion irradiation, particularly for 4H–SiC SBD under LT irradiation. Increasing the annealing temperature leads to the slight improvement in forward current, leakage current and breakdown voltage. However, the annealing process may result in the formation of Ti and Si compounds at the interface between the Schottky metal and SiC, as well as a significant number of vacancies. Combined with Technology Computer Aided Design (TCAD) simulations, it is concluded that the interface trap charge concentrations exceeding 1 × 1012 cm−2 significantly impact the breakdown characteristics of 4H–SiC SBDs.