{"title":"甲基环己烷连续脱氢制甲苯过程中的工艺强化","authors":"","doi":"10.1016/j.cep.2024.109904","DOIUrl":null,"url":null,"abstract":"<div><p>The toluene/methylcyclohexane cycle is a safe and practical Liquid Organic Hydrogen Carrier (LOHC) for the storage of hydrogen. Nevertheless, the dehydrogenation reaction of methylcyclohexane (MCH) should be improved to assure a total selectivity to toluene (TOL), avoiding the subproducts formation. In this research, a millireactor with channel internal diameter in the range of milimeters has been tested and evaluated in the dehydrogenation of MCH to TOL. The millireactor configuration confers it some features and advantages compared to fixed-bed reactors, e.g., better mass and energy transfer and increased performance (10–20 %). To verify these advantages, a comparison between conventional fixed bed (9 mm i.d.) and millireactor is carried out. Thanks to its configuration, the millireactor could control effectively the heat generated by the reactions to avoid hot-spot formation and the sintering of the catalyst. The results obtained demonstrate that the catalysts activity in the reaction is improved with the application of the millireactor respect the fixed-bed ones and neither catalyst sintering, nor pressure drop was appreciated during the catalytic tests. At the best reaction conditions, Tecnalia´s millireactor converses continuously up to 99 % of MCH to TOL with 100 % selectivity at atmospheric pressure, showing the huge potential of the millireactor concept.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124002423/pdfft?md5=b915844731208d4478c2dd452b2147d0&pid=1-s2.0-S0255270124002423-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Process intensification in the continuous dehydrogenation of methylcyclohexane to toluene\",\"authors\":\"\",\"doi\":\"10.1016/j.cep.2024.109904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The toluene/methylcyclohexane cycle is a safe and practical Liquid Organic Hydrogen Carrier (LOHC) for the storage of hydrogen. Nevertheless, the dehydrogenation reaction of methylcyclohexane (MCH) should be improved to assure a total selectivity to toluene (TOL), avoiding the subproducts formation. In this research, a millireactor with channel internal diameter in the range of milimeters has been tested and evaluated in the dehydrogenation of MCH to TOL. The millireactor configuration confers it some features and advantages compared to fixed-bed reactors, e.g., better mass and energy transfer and increased performance (10–20 %). To verify these advantages, a comparison between conventional fixed bed (9 mm i.d.) and millireactor is carried out. Thanks to its configuration, the millireactor could control effectively the heat generated by the reactions to avoid hot-spot formation and the sintering of the catalyst. The results obtained demonstrate that the catalysts activity in the reaction is improved with the application of the millireactor respect the fixed-bed ones and neither catalyst sintering, nor pressure drop was appreciated during the catalytic tests. At the best reaction conditions, Tecnalia´s millireactor converses continuously up to 99 % of MCH to TOL with 100 % selectivity at atmospheric pressure, showing the huge potential of the millireactor concept.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002423/pdfft?md5=b915844731208d4478c2dd452b2147d0&pid=1-s2.0-S0255270124002423-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002423\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124002423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Process intensification in the continuous dehydrogenation of methylcyclohexane to toluene
The toluene/methylcyclohexane cycle is a safe and practical Liquid Organic Hydrogen Carrier (LOHC) for the storage of hydrogen. Nevertheless, the dehydrogenation reaction of methylcyclohexane (MCH) should be improved to assure a total selectivity to toluene (TOL), avoiding the subproducts formation. In this research, a millireactor with channel internal diameter in the range of milimeters has been tested and evaluated in the dehydrogenation of MCH to TOL. The millireactor configuration confers it some features and advantages compared to fixed-bed reactors, e.g., better mass and energy transfer and increased performance (10–20 %). To verify these advantages, a comparison between conventional fixed bed (9 mm i.d.) and millireactor is carried out. Thanks to its configuration, the millireactor could control effectively the heat generated by the reactions to avoid hot-spot formation and the sintering of the catalyst. The results obtained demonstrate that the catalysts activity in the reaction is improved with the application of the millireactor respect the fixed-bed ones and neither catalyst sintering, nor pressure drop was appreciated during the catalytic tests. At the best reaction conditions, Tecnalia´s millireactor converses continuously up to 99 % of MCH to TOL with 100 % selectivity at atmospheric pressure, showing the huge potential of the millireactor concept.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.