Richard Müller , Philipp Hengst , Horst Biermann , Ralph Hunger , Robin Berger , Anja Buchwalder
{"title":"包覆铬镍铁合金 718 层的硼化热循环对原位时效硬化以及磨损和腐蚀行为的影响","authors":"Richard Müller , Philipp Hengst , Horst Biermann , Ralph Hunger , Robin Berger , Anja Buchwalder","doi":"10.1016/j.cirpj.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel-based superalloys exhibit exceptional suitability for operating in environments characterized by corrosive agents and elevated temperatures. Strategic allocation of this expensive material solely to the functional surface areas yields significant economic advantages. The poor tribological property profile of Inconel 718 can be significantly improved through a boriding process. In this study, the possibility of combining a coating process with boriding technology and in situ heat treatment was investigated. Layers of Inconel 718 were deposited to an austenitic stainless steel using wire-based electron beam cladding (EBC) and subsequently subjected to boriding. Based on results from annealing experiments, boriding treatments were performed at various temperature/time regimens with the aim of inducing in situ age hardening during boriding. The focus was on the investigation of the influence of the temperature/time regime during boriding on the microstructure and hardness, as well as examining the wear and corrosion behavior of the resulting borided layers. The results showed that the desired target hardness range was achieved after in situ aging with all boriding variants. Furthermore, it was demonstrated that boriding significantly improved the wear resistance but decreased corrosion resistance.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 118-127"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755581724001160/pdfft?md5=bee02b477fd7939d8dc46626229f2d31&pid=1-s2.0-S1755581724001160-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of the boriding thermal cycle of a cladded Inconel 718 layer on both in situ age hardening as well as wear and corrosion behavior\",\"authors\":\"Richard Müller , Philipp Hengst , Horst Biermann , Ralph Hunger , Robin Berger , Anja Buchwalder\",\"doi\":\"10.1016/j.cirpj.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel-based superalloys exhibit exceptional suitability for operating in environments characterized by corrosive agents and elevated temperatures. Strategic allocation of this expensive material solely to the functional surface areas yields significant economic advantages. The poor tribological property profile of Inconel 718 can be significantly improved through a boriding process. In this study, the possibility of combining a coating process with boriding technology and in situ heat treatment was investigated. Layers of Inconel 718 were deposited to an austenitic stainless steel using wire-based electron beam cladding (EBC) and subsequently subjected to boriding. Based on results from annealing experiments, boriding treatments were performed at various temperature/time regimens with the aim of inducing in situ age hardening during boriding. The focus was on the investigation of the influence of the temperature/time regime during boriding on the microstructure and hardness, as well as examining the wear and corrosion behavior of the resulting borided layers. The results showed that the desired target hardness range was achieved after in situ aging with all boriding variants. Furthermore, it was demonstrated that boriding significantly improved the wear resistance but decreased corrosion resistance.</p></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"53 \",\"pages\":\"Pages 118-127\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001160/pdfft?md5=bee02b477fd7939d8dc46626229f2d31&pid=1-s2.0-S1755581724001160-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001160\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001160","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Influence of the boriding thermal cycle of a cladded Inconel 718 layer on both in situ age hardening as well as wear and corrosion behavior
Nickel-based superalloys exhibit exceptional suitability for operating in environments characterized by corrosive agents and elevated temperatures. Strategic allocation of this expensive material solely to the functional surface areas yields significant economic advantages. The poor tribological property profile of Inconel 718 can be significantly improved through a boriding process. In this study, the possibility of combining a coating process with boriding technology and in situ heat treatment was investigated. Layers of Inconel 718 were deposited to an austenitic stainless steel using wire-based electron beam cladding (EBC) and subsequently subjected to boriding. Based on results from annealing experiments, boriding treatments were performed at various temperature/time regimens with the aim of inducing in situ age hardening during boriding. The focus was on the investigation of the influence of the temperature/time regime during boriding on the microstructure and hardness, as well as examining the wear and corrosion behavior of the resulting borided layers. The results showed that the desired target hardness range was achieved after in situ aging with all boriding variants. Furthermore, it was demonstrated that boriding significantly improved the wear resistance but decreased corrosion resistance.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.