{"title":"金银纳米粒子从立方八面体到二十面体转变的 DFT 分析","authors":"Obioma U. Uche","doi":"10.1016/j.commatsci.2024.113262","DOIUrl":null,"url":null,"abstract":"In the current work, we investigate the transformation mechanics of gold-silver nanoparticles with cuboctahedral and icosahedral geometries by varying relevant attributes including size, composition, morphology, and chemical order. Our findings reveal that the transformation occurs via a martensitic, symmetric mechanism, irrespective of the specific attributes for all nanoparticles under consideration. The associated transformation barriers are observed to be strongly dependent on both size and composition as the activation energies increase with higher silver content. The chemical order is also a significant factor for determining how readily the transformation occurs since core–shell nanoparticles with gold exteriors display higher barriers in comparison to their silver counterparts. Likewise, for a given composition, core–shell morphologies indicate reduced ease of transformation relative to alloy nanoparticles.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT analysis of the cuboctahedral to icosahedral transformation of gold-silver nanoparticles\",\"authors\":\"Obioma U. Uche\",\"doi\":\"10.1016/j.commatsci.2024.113262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, we investigate the transformation mechanics of gold-silver nanoparticles with cuboctahedral and icosahedral geometries by varying relevant attributes including size, composition, morphology, and chemical order. Our findings reveal that the transformation occurs via a martensitic, symmetric mechanism, irrespective of the specific attributes for all nanoparticles under consideration. The associated transformation barriers are observed to be strongly dependent on both size and composition as the activation energies increase with higher silver content. The chemical order is also a significant factor for determining how readily the transformation occurs since core–shell nanoparticles with gold exteriors display higher barriers in comparison to their silver counterparts. Likewise, for a given composition, core–shell morphologies indicate reduced ease of transformation relative to alloy nanoparticles.\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.commatsci.2024.113262\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113262","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A DFT analysis of the cuboctahedral to icosahedral transformation of gold-silver nanoparticles
In the current work, we investigate the transformation mechanics of gold-silver nanoparticles with cuboctahedral and icosahedral geometries by varying relevant attributes including size, composition, morphology, and chemical order. Our findings reveal that the transformation occurs via a martensitic, symmetric mechanism, irrespective of the specific attributes for all nanoparticles under consideration. The associated transformation barriers are observed to be strongly dependent on both size and composition as the activation energies increase with higher silver content. The chemical order is also a significant factor for determining how readily the transformation occurs since core–shell nanoparticles with gold exteriors display higher barriers in comparison to their silver counterparts. Likewise, for a given composition, core–shell morphologies indicate reduced ease of transformation relative to alloy nanoparticles.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.