贻贝上的附生虫群落与寄生和潮间带岩石区位置的关系。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-08-13 DOI:10.1093/femsec/fiae101
Katherine M Davis, Laura Wegener Parfrey, Christopher D G Harley, Keith Holmes, Olivia Schaefer, Alyssa-Lois Gehman
{"title":"贻贝上的附生虫群落与寄生和潮间带岩石区位置的关系。","authors":"Katherine M Davis, Laura Wegener Parfrey, Christopher D G Harley, Keith Holmes, Olivia Schaefer, Alyssa-Lois Gehman","doi":"10.1093/femsec/fiae101","DOIUrl":null,"url":null,"abstract":"<p><p>The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epibiont communities on mussels in relation to parasitism and location in the rocky intertidal zone.\",\"authors\":\"Katherine M Davis, Laura Wegener Parfrey, Christopher D G Harley, Keith Holmes, Olivia Schaefer, Alyssa-Lois Gehman\",\"doi\":\"10.1093/femsec/fiae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae101\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们对多变的岩石潮间带中形成寄主-寄生虫相互作用和附生虫群落的因素知之甚少。加利福尼亚贻贝(Mytilus californianus)的内生蓝藻寄生虫会侵蚀宿主的贝壳。在特定的非生物条件下,这些蓝藻会相互影响,因为外壳侵蚀可以保护贻贝免受热应力的影响。寄生虫对贝壳的侵蚀如何影响贻贝贝壳上的表生微生物群落,以及这些相互作用的环境依赖性尚不清楚。我们利用移植实验来描述潮间带海拔梯度上贻贝壳上附生细菌和内生寄生虫群落的特征。我们假设,与空贻贝壳相比,活贻贝及相关附生细菌群落可限制内生蓝藻的定殖和侵蚀。我们假设贝壳的侵蚀与表生细菌群落的组成变化和潮汐高低有关。我们发现,与空贝壳相比,活贻贝受到的贝壳侵蚀较少,这表明内生寄生虫具有潜在的生物调节作用。贝壳侵蚀加剧与独特的表生细菌群落无关,而且与假定的内生寄生类群的相对丰度脱钩。我们的研究结果表明,在整个潮间带岩石区,表生细菌群落结构并不会受到内生蓝藻与贻贝之间动态共生关系的直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epibiont communities on mussels in relation to parasitism and location in the rocky intertidal zone.

The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts. Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. Spinach Seed Microbiome Characteristics Linked to Suppressiveness Against Globisporangium ultimum Damping-Off. Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1