计算癌症病理学中的人机互动

A. Syrnioti , A. Polónia , J. Pinto , C. Eloy
{"title":"计算癌症病理学中的人机互动","authors":"A. Syrnioti ,&nbsp;A. Polónia ,&nbsp;J. Pinto ,&nbsp;C. Eloy","doi":"10.1016/j.esmorw.2024.100062","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of the augmented pathologist that works in synergy with artificial intelligence (AI) is generally accepted as the most accurate in comparison to AI standing alone and the general pathologist standing alone. Human–machine interactions triggered by the synergic daily work give rise to trust-related concerns and potential biases that need to be addressed. The long-term use of AI requires actions to prevent deskilling of the pathology workforce, and to ensuring appropriate education of future generations. Establishment of clear guidelines for the verification and validation of AI tools is crucial for the maintenance of high-quality cancer pathology.</p></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"5 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949820124000407/pdfft?md5=4759b20d29fd61de169e798a36ba0ae5&pid=1-s2.0-S2949820124000407-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Human–machine interaction in computational cancer pathology\",\"authors\":\"A. Syrnioti ,&nbsp;A. Polónia ,&nbsp;J. Pinto ,&nbsp;C. Eloy\",\"doi\":\"10.1016/j.esmorw.2024.100062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of the augmented pathologist that works in synergy with artificial intelligence (AI) is generally accepted as the most accurate in comparison to AI standing alone and the general pathologist standing alone. Human–machine interactions triggered by the synergic daily work give rise to trust-related concerns and potential biases that need to be addressed. The long-term use of AI requires actions to prevent deskilling of the pathology workforce, and to ensuring appropriate education of future generations. Establishment of clear guidelines for the verification and validation of AI tools is crucial for the maintenance of high-quality cancer pathology.</p></div>\",\"PeriodicalId\":100491,\"journal\":{\"name\":\"ESMO Real World Data and Digital Oncology\",\"volume\":\"5 \",\"pages\":\"Article 100062\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949820124000407/pdfft?md5=4759b20d29fd61de169e798a36ba0ae5&pid=1-s2.0-S2949820124000407-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESMO Real World Data and Digital Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949820124000407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820124000407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与人工智能(AI)协同工作的增强病理学家的表现被普遍认为是最准确的,与单独的人工智能和单独的普通病理学家相比也是如此。协同日常工作所引发的人机互动会产生与信任相关的问题和潜在偏见,需要加以解决。要长期使用人工智能,就必须采取行动,防止病理学人才流失,并确保对后代进行适当的教育。为人工智能工具的验证和确认制定明确的指导方针对于保持高质量的癌症病理学至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human–machine interaction in computational cancer pathology

The performance of the augmented pathologist that works in synergy with artificial intelligence (AI) is generally accepted as the most accurate in comparison to AI standing alone and the general pathologist standing alone. Human–machine interactions triggered by the synergic daily work give rise to trust-related concerns and potential biases that need to be addressed. The long-term use of AI requires actions to prevent deskilling of the pathology workforce, and to ensuring appropriate education of future generations. Establishment of clear guidelines for the verification and validation of AI tools is crucial for the maintenance of high-quality cancer pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utility of automated data transfer for cancer clinical trials and considerations for implementation Characterisation of oncology EHR-derived real-world data in the UK, Germany, and Japan Evolving treatment patterns and outcomes among patients with metastatic urothelial carcinoma post-avelumab maintenance approval: insights from The US Oncology Network Collaborating across sectors in service of open science, precision oncology, and patients: an overview of the AACR Project GENIE (Genomics Evidence Neoplasia Information Exchange) Biopharma Collaborative (BPC) Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1