利用质子核磁共振波谱自动分析葡萄酒化学成分

Brian L. Lee, Manoj Rout, Ying Dong, Matthias Lipfert, Mark Berjanskii, Fatemeh Shahin, Dipanjan Bhattacharyya, Alyaa Selim, Rupasri Mandal and David S. Wishart*, 
{"title":"利用质子核磁共振波谱自动分析葡萄酒化学成分","authors":"Brian L. Lee,&nbsp;Manoj Rout,&nbsp;Ying Dong,&nbsp;Matthias Lipfert,&nbsp;Mark Berjanskii,&nbsp;Fatemeh Shahin,&nbsp;Dipanjan Bhattacharyya,&nbsp;Alyaa Selim,&nbsp;Rupasri Mandal and David S. Wishart*,&nbsp;","doi":"10.1021/acsfoodscitech.4c0029810.1021/acsfoodscitech.4c00298","DOIUrl":null,"url":null,"abstract":"<p >We report the development of MagMet-W (magnetic resonance for metabolomics of wine), a software program that can automatically determine the chemical composition of wine via <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy. MagMet-W is an extension of MagMet developed for the automated metabolomic analysis of human serum by <sup>1</sup>H NMR. We identified 70 compounds suitable for inclusion into MagMet-W. We then obtained 1D <sup>1</sup>H NMR reference spectra of the pure compounds at 700 MHz and incorporated these spectra into the MagMet-W compound library. The processing of the wine NMR spectra and profiling of the 70 wine compounds were then optimized based on manual <sup>1</sup>H NMR analysis. MagMet-W can automatically identify 70 wine compounds in most wine samples and can quantify them to 10–15% of the manually determined concentrations, and it can analyze multiple spectra simultaneously, at 10 min per spectrum. The MagMet-W Web server is available at https://www.magmet.ca.</p>","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"4 8","pages":"1937–1949 1937–1949"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsfoodscitech.4c00298","citationCount":"0","resultStr":"{\"title\":\"Automatic Chemical Profiling of Wine by Proton Nuclear Magnetic Resonance Spectroscopy\",\"authors\":\"Brian L. Lee,&nbsp;Manoj Rout,&nbsp;Ying Dong,&nbsp;Matthias Lipfert,&nbsp;Mark Berjanskii,&nbsp;Fatemeh Shahin,&nbsp;Dipanjan Bhattacharyya,&nbsp;Alyaa Selim,&nbsp;Rupasri Mandal and David S. Wishart*,&nbsp;\",\"doi\":\"10.1021/acsfoodscitech.4c0029810.1021/acsfoodscitech.4c00298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the development of MagMet-W (magnetic resonance for metabolomics of wine), a software program that can automatically determine the chemical composition of wine via <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy. MagMet-W is an extension of MagMet developed for the automated metabolomic analysis of human serum by <sup>1</sup>H NMR. We identified 70 compounds suitable for inclusion into MagMet-W. We then obtained 1D <sup>1</sup>H NMR reference spectra of the pure compounds at 700 MHz and incorporated these spectra into the MagMet-W compound library. The processing of the wine NMR spectra and profiling of the 70 wine compounds were then optimized based on manual <sup>1</sup>H NMR analysis. MagMet-W can automatically identify 70 wine compounds in most wine samples and can quantify them to 10–15% of the manually determined concentrations, and it can analyze multiple spectra simultaneously, at 10 min per spectrum. The MagMet-W Web server is available at https://www.magmet.ca.</p>\",\"PeriodicalId\":72048,\"journal\":{\"name\":\"ACS food science & technology\",\"volume\":\"4 8\",\"pages\":\"1937–1949 1937–1949\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsfoodscitech.4c00298\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS food science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了 MagMet-W(用于葡萄酒代谢组学的磁共振)的开发情况,该软件程序可通过 1H 核磁共振 (NMR) 光谱自动确定葡萄酒的化学成分。MagMet-W 是 MagMet 的扩展,MagMet 是为通过 1H NMR 对人体血清进行自动代谢组学分析而开发的。我们确定了 70 种适合纳入 MagMet-W 的化合物。然后,我们在 700 MHz 频率下获得了纯化合物的一维 1H NMR 参考光谱,并将这些光谱纳入 MagMet-W 化合物库。然后,根据手动 1H NMR 分析,对葡萄酒 NMR 图谱的处理和 70 种葡萄酒化合物的分析进行了优化。MagMet-W 能自动识别大多数葡萄酒样品中的 70 种葡萄酒化合物,并能将其定量到人工测定浓度的 10-15%,还能同时分析多个光谱,每个光谱的分析时间为 10 分钟。MagMet-W 网络服务器的网址为 https://www.magmet.ca。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Chemical Profiling of Wine by Proton Nuclear Magnetic Resonance Spectroscopy

We report the development of MagMet-W (magnetic resonance for metabolomics of wine), a software program that can automatically determine the chemical composition of wine via 1H nuclear magnetic resonance (NMR) spectroscopy. MagMet-W is an extension of MagMet developed for the automated metabolomic analysis of human serum by 1H NMR. We identified 70 compounds suitable for inclusion into MagMet-W. We then obtained 1D 1H NMR reference spectra of the pure compounds at 700 MHz and incorporated these spectra into the MagMet-W compound library. The processing of the wine NMR spectra and profiling of the 70 wine compounds were then optimized based on manual 1H NMR analysis. MagMet-W can automatically identify 70 wine compounds in most wine samples and can quantify them to 10–15% of the manually determined concentrations, and it can analyze multiple spectra simultaneously, at 10 min per spectrum. The MagMet-W Web server is available at https://www.magmet.ca.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Sugar Cane Glycoproteins: an Alternative to Improve the Production of Xanthan Gum by Xanthomonas albilineans Utilization of Lacticaseibacillus rhamnosus and Pediococcus pentosaceus Cofermentation on Potato for Juice and High-Fiber Powder Production: An Innovative Approach for Pilot Scale Manufacturing A Novel Chiral Amino Acid-Based Methodology for Authenticity and Origin Determination of Chinese Wines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1