褪黑激素能促进大豆的氮素代谢,提高低氮水平下的大豆氮素代谢能力

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental and Experimental Botany Pub Date : 2024-08-08 DOI:10.1016/j.envexpbot.2024.105933
{"title":"褪黑激素能促进大豆的氮素代谢,提高低氮水平下的大豆氮素代谢能力","authors":"","doi":"10.1016/j.envexpbot.2024.105933","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen availability profoundly impacts crop productivity, especially for soybeans, which exhibit a substantial demand for nitrogen. In response to the over-reliance on nitrogen fertilizers, which poses both inefficiencies and environmental concerns, the potential of melatonin in enhancing nitrogen uptake and utilization in soybeans through root irrigation was investigated. Melatonin significantly increased the activity of ammonium assimilating enzymes, thereby enhancing plant tolerance to low nitrogen levels, particularly at a concentration of 10 μM. This phenomenon has been conclusively linked to the augmented nitrogen fixation and utilization capacity, attributed to the facilitating rhizobial infection. Notably, melatonin influenced flavonoid content, specifically inducing genistein levels, essential for rhizobial infection. The malonyltransferase-encoding gene <em>GmMaT2</em>, which modifies isoflavones, was found to be crucial for the effects of melatonin on nodulation and nitrogen metabolism. The silence of <em>GmMaT2</em> hindered the beneficial effects of melatonin on nodule development and attenuated its ability to enhance aspects of low nitrogen tolerance in soybean. It was elucidated that the potential of melatonin as a sustainable strategy for enhancing nitrogen utilization efficiency in soybeans. It provided insights into the underlying mechanisms and underscored the significance of <em>GmMaT2</em> in mediating the beneficial effects induced by melatonin under low nitrogen conditions. The findings present a promising solution for mitigating agricultural costs and environmental impacts.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098847224002910/pdfft?md5=aec5bd0b90dd3ee68bdb846feef8ea00&pid=1-s2.0-S0098847224002910-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Melatonin promotes nodule development enhancing soybean nitrogen metabolism under low nitrogen levels\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen availability profoundly impacts crop productivity, especially for soybeans, which exhibit a substantial demand for nitrogen. In response to the over-reliance on nitrogen fertilizers, which poses both inefficiencies and environmental concerns, the potential of melatonin in enhancing nitrogen uptake and utilization in soybeans through root irrigation was investigated. Melatonin significantly increased the activity of ammonium assimilating enzymes, thereby enhancing plant tolerance to low nitrogen levels, particularly at a concentration of 10 μM. This phenomenon has been conclusively linked to the augmented nitrogen fixation and utilization capacity, attributed to the facilitating rhizobial infection. Notably, melatonin influenced flavonoid content, specifically inducing genistein levels, essential for rhizobial infection. The malonyltransferase-encoding gene <em>GmMaT2</em>, which modifies isoflavones, was found to be crucial for the effects of melatonin on nodulation and nitrogen metabolism. The silence of <em>GmMaT2</em> hindered the beneficial effects of melatonin on nodule development and attenuated its ability to enhance aspects of low nitrogen tolerance in soybean. It was elucidated that the potential of melatonin as a sustainable strategy for enhancing nitrogen utilization efficiency in soybeans. It provided insights into the underlying mechanisms and underscored the significance of <em>GmMaT2</em> in mediating the beneficial effects induced by melatonin under low nitrogen conditions. The findings present a promising solution for mitigating agricultural costs and environmental impacts.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098847224002910/pdfft?md5=aec5bd0b90dd3ee68bdb846feef8ea00&pid=1-s2.0-S0098847224002910-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224002910\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224002910","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氮素的可用性对作物产量影响深远,尤其是对氮素需求量很大的大豆。针对过度依赖氮肥造成的低效率和环境问题,研究人员调查了褪黑激素通过灌根提高大豆对氮的吸收和利用的潜力。褪黑激素明显提高了铵同化酶的活性,从而增强了植物对低氮水平的耐受性,尤其是在浓度为 10 μM 时。这一现象与固氮和氮利用能力的提高有确切联系,而固氮和氮利用能力的提高则归因于根瘤菌感染的促进。值得注意的是,褪黑激素会影响类黄酮的含量,特别是诱导根瘤菌感染所必需的染料木素含量。研究发现,丙二酰基转移酶编码基因 GmMaT2 是褪黑激素影响根瘤和氮代谢的关键,该基因能修饰异黄酮。GmMaT2 的沉默阻碍了褪黑激素对大豆结瘤发育的有益影响,并削弱了其增强大豆耐低氮能力的能力。研究阐明了褪黑激素作为提高大豆氮利用效率的可持续策略的潜力。研究深入揭示了褪黑激素的内在机制,并强调了 GmMaT2 在低氮条件下介导褪黑激素诱导的有益效应的重要性。这些发现为减轻农业成本和环境影响提供了一个很有前景的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melatonin promotes nodule development enhancing soybean nitrogen metabolism under low nitrogen levels

Nitrogen availability profoundly impacts crop productivity, especially for soybeans, which exhibit a substantial demand for nitrogen. In response to the over-reliance on nitrogen fertilizers, which poses both inefficiencies and environmental concerns, the potential of melatonin in enhancing nitrogen uptake and utilization in soybeans through root irrigation was investigated. Melatonin significantly increased the activity of ammonium assimilating enzymes, thereby enhancing plant tolerance to low nitrogen levels, particularly at a concentration of 10 μM. This phenomenon has been conclusively linked to the augmented nitrogen fixation and utilization capacity, attributed to the facilitating rhizobial infection. Notably, melatonin influenced flavonoid content, specifically inducing genistein levels, essential for rhizobial infection. The malonyltransferase-encoding gene GmMaT2, which modifies isoflavones, was found to be crucial for the effects of melatonin on nodulation and nitrogen metabolism. The silence of GmMaT2 hindered the beneficial effects of melatonin on nodule development and attenuated its ability to enhance aspects of low nitrogen tolerance in soybean. It was elucidated that the potential of melatonin as a sustainable strategy for enhancing nitrogen utilization efficiency in soybeans. It provided insights into the underlying mechanisms and underscored the significance of GmMaT2 in mediating the beneficial effects induced by melatonin under low nitrogen conditions. The findings present a promising solution for mitigating agricultural costs and environmental impacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
期刊最新文献
Genome-wide identification and expression analysis of autophagy-related genes (ATGs), revealing ATG8a and ATG18b participating in drought stress in Phoebe bournei Nickel phytoremediation potential of Plantago major L.: Transcriptome analysis Synergistic enhancement of biomass allocation from leaves to stem by far-red light and warm temperature can lead to growth reductions Assessing the effects of early and timely sowing on wheat cultivar HD 2967 under current and future tropospheric ozone scenarios Integrated physiological, transcriptomic and rhizospheric microbial community analysis unveil the high tolerance of woody bamboo Dendrocalamus brandisii under cadmium toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1