{"title":"基于 FastDTW 的铁路道岔系统两阶段智能故障分类模型","authors":"Huasheng Sun, Yingguo Fu, Sizhong Zhang, Zhongqun Yang, Fangmao Guo, Linfeng Li, Jianyang Liu","doi":"10.1155/2024/3715605","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The identification and classification of railway turnout faults are essential for guaranteeing train safety. Traditional diagnostic methods for these faults face challenges due to limited accuracy, stemming from the scarcity of fault samples, and often fail to provide detailed fault classification. In response to these issues, we introduce an advanced two-stage model for the classification of railway turnout faults, utilizing the FastDTW algorithm, known for its efficient approximation of DTW (dynamic time warping) with linear time and space complexity. In the first stage, we employ a Shapelets feature extraction algorithm, based on a greedy strategy, to efficiently identify the most representative segments from long sequence action curves. Progressing to the second stage, the model tackles the inherent singularities in the FastDTW algorithm by incorporating a novel curve segmentation technique, also rooted in a greedy strategy. This technique fine-tunes the fault classification process, leading to more accurate outcomes. The effectiveness and precision of our proposed model were validated empirically using a dataset of 540 faulty curves from a specific high-speed railway station, achieving an impressive classification accuracy of 97%. This substantial accuracy in fault curve classification underscores the potential of our model to significantly enhance the safety and efficiency of railway operations, marking a notable advancement in the field of railway turnout fault classification.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3715605","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Two-Stage Fault Classification Model for Railway Turnout Systems Based on FastDTW\",\"authors\":\"Huasheng Sun, Yingguo Fu, Sizhong Zhang, Zhongqun Yang, Fangmao Guo, Linfeng Li, Jianyang Liu\",\"doi\":\"10.1155/2024/3715605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The identification and classification of railway turnout faults are essential for guaranteeing train safety. Traditional diagnostic methods for these faults face challenges due to limited accuracy, stemming from the scarcity of fault samples, and often fail to provide detailed fault classification. In response to these issues, we introduce an advanced two-stage model for the classification of railway turnout faults, utilizing the FastDTW algorithm, known for its efficient approximation of DTW (dynamic time warping) with linear time and space complexity. In the first stage, we employ a Shapelets feature extraction algorithm, based on a greedy strategy, to efficiently identify the most representative segments from long sequence action curves. Progressing to the second stage, the model tackles the inherent singularities in the FastDTW algorithm by incorporating a novel curve segmentation technique, also rooted in a greedy strategy. This technique fine-tunes the fault classification process, leading to more accurate outcomes. The effectiveness and precision of our proposed model were validated empirically using a dataset of 540 faulty curves from a specific high-speed railway station, achieving an impressive classification accuracy of 97%. This substantial accuracy in fault curve classification underscores the potential of our model to significantly enhance the safety and efficiency of railway operations, marking a notable advancement in the field of railway turnout fault classification.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3715605\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3715605\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3715605","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An Intelligent Two-Stage Fault Classification Model for Railway Turnout Systems Based on FastDTW
The identification and classification of railway turnout faults are essential for guaranteeing train safety. Traditional diagnostic methods for these faults face challenges due to limited accuracy, stemming from the scarcity of fault samples, and often fail to provide detailed fault classification. In response to these issues, we introduce an advanced two-stage model for the classification of railway turnout faults, utilizing the FastDTW algorithm, known for its efficient approximation of DTW (dynamic time warping) with linear time and space complexity. In the first stage, we employ a Shapelets feature extraction algorithm, based on a greedy strategy, to efficiently identify the most representative segments from long sequence action curves. Progressing to the second stage, the model tackles the inherent singularities in the FastDTW algorithm by incorporating a novel curve segmentation technique, also rooted in a greedy strategy. This technique fine-tunes the fault classification process, leading to more accurate outcomes. The effectiveness and precision of our proposed model were validated empirically using a dataset of 540 faulty curves from a specific high-speed railway station, achieving an impressive classification accuracy of 97%. This substantial accuracy in fault curve classification underscores the potential of our model to significantly enhance the safety and efficiency of railway operations, marking a notable advancement in the field of railway turnout fault classification.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.