{"title":"Fe-MIL-101 纳米酶在牛奶中的应用和细胞毒性评估","authors":"Ruicong Tang, Keyu Xing, Jia Tu, Xufeng Wang, Liguang Xu, Wei Chen, Yunhui Cheng, Zhou Xu","doi":"10.1007/s12010-024-05015-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 μg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H<sub>2</sub>BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 μg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and Cytotoxicity Evaluation of Fe-MIL-101 Nanozyme in Milk.\",\"authors\":\"Ruicong Tang, Keyu Xing, Jia Tu, Xufeng Wang, Liguang Xu, Wei Chen, Yunhui Cheng, Zhou Xu\",\"doi\":\"10.1007/s12010-024-05015-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 μg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H<sub>2</sub>BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 μg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05015-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05015-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Application and Cytotoxicity Evaluation of Fe-MIL-101 Nanozyme in Milk.
In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 μg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H2BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 μg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.