{"title":"接触微塑料降低了地鳖虫(Blaps polychresta)的排便率,改变了消化酶活性,并导致中肠组织发生组织学和超细胞变化。","authors":"","doi":"10.1016/j.jinsphys.2024.104697","DOIUrl":null,"url":null,"abstract":"<div><p>Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4–23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; <em>i.e.,</em> nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta)\",\"authors\":\"\",\"doi\":\"10.1016/j.jinsphys.2024.104697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4–23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; <em>i.e.,</em> nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.</p></div>\",\"PeriodicalId\":16189,\"journal\":{\"name\":\"Journal of insect physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of insect physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022191024000854\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191024000854","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta)
Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4–23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; i.e., nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.