变压器架构支持多模态深度学习生存预测:胶质母细胞瘤多中心研究。

IF 3.7 Q1 CLINICAL NEUROLOGY Neuro-oncology advances Pub Date : 2024-07-11 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae122
Ahmed Gomaa, Yixing Huang, Amr Hagag, Charlotte Schmitter, Daniel Höfler, Thomas Weissmann, Katharina Breininger, Manuel Schmidt, Jenny Stritzelberger, Daniel Delev, Roland Coras, Arnd Dörfler, Oliver Schnell, Benjamin Frey, Udo S Gaipl, Sabine Semrau, Christoph Bert, Peter Hau, Rainer Fietkau, Florian Putz
{"title":"变压器架构支持多模态深度学习生存预测:胶质母细胞瘤多中心研究。","authors":"Ahmed Gomaa, Yixing Huang, Amr Hagag, Charlotte Schmitter, Daniel Höfler, Thomas Weissmann, Katharina Breininger, Manuel Schmidt, Jenny Stritzelberger, Daniel Delev, Roland Coras, Arnd Dörfler, Oliver Schnell, Benjamin Frey, Udo S Gaipl, Sabine Semrau, Christoph Bert, Peter Hau, Rainer Fietkau, Florian Putz","doi":"10.1093/noajnl/vdae122","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This research aims to improve glioblastoma survival prediction by integrating MR images, clinical, and molecular-pathologic data in a transformer-based deep learning model, addressing data heterogeneity and performance generalizability.</p><p><strong>Methods: </strong>We propose and evaluate a transformer-based nonlinear and nonproportional survival prediction model. The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with nonimaging data using cross-attention. To demonstrate model generalizability, the model is assessed with the time-dependent concordance index (Cdt) in 2 training setups using 3 independent public test sets: UPenn-GBM, UCSF-PDGM, and Rio Hortega University Hospital (RHUH)-GBM, each comprising 378, 366, and 36 cases, respectively.</p><p><strong>Results: </strong>The proposed transformer model achieved a promising performance for imaging as well as nonimaging data, effectively integrating both modalities for enhanced performance (UCSF-PDGM test-set, imaging Cdt 0.578, multimodal Cdt 0.672) while outperforming state-of-the-art late-fusion 3D-CNN-based models. Consistent performance was observed across the 3 independent multicenter test sets with Cdt values of 0.707 (UPenn-GBM, internal test set), 0.672 (UCSF-PDGM, first external test set), and 0.618 (RHUH-GBM, second external test set). The model achieved significant discrimination between patients with favorable and unfavorable survival for all 3 datasets (log-rank <i>P</i> 1.9 × 10<sup>-8</sup>, 9.7 × 10<sup>-3</sup>, and 1.2 × 10<sup>-2</sup>). Comparable results were obtained in the second setup using UCSF-PDGM for training/internal testing and UPenn-GBM and RHUH-GBM for external testing (Cdt 0.670, 0.638, and 0.621).</p><p><strong>Conclusions: </strong>The proposed transformer-based survival prediction model integrates complementary information from diverse input modalities, contributing to improved glioblastoma survival prediction compared to state-of-the-art methods. Consistent performance was observed across institutions supporting model generalizability.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive multimodal deep learning survival prediction enabled by a transformer architecture: A multicenter study in glioblastoma.\",\"authors\":\"Ahmed Gomaa, Yixing Huang, Amr Hagag, Charlotte Schmitter, Daniel Höfler, Thomas Weissmann, Katharina Breininger, Manuel Schmidt, Jenny Stritzelberger, Daniel Delev, Roland Coras, Arnd Dörfler, Oliver Schnell, Benjamin Frey, Udo S Gaipl, Sabine Semrau, Christoph Bert, Peter Hau, Rainer Fietkau, Florian Putz\",\"doi\":\"10.1093/noajnl/vdae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This research aims to improve glioblastoma survival prediction by integrating MR images, clinical, and molecular-pathologic data in a transformer-based deep learning model, addressing data heterogeneity and performance generalizability.</p><p><strong>Methods: </strong>We propose and evaluate a transformer-based nonlinear and nonproportional survival prediction model. The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with nonimaging data using cross-attention. To demonstrate model generalizability, the model is assessed with the time-dependent concordance index (Cdt) in 2 training setups using 3 independent public test sets: UPenn-GBM, UCSF-PDGM, and Rio Hortega University Hospital (RHUH)-GBM, each comprising 378, 366, and 36 cases, respectively.</p><p><strong>Results: </strong>The proposed transformer model achieved a promising performance for imaging as well as nonimaging data, effectively integrating both modalities for enhanced performance (UCSF-PDGM test-set, imaging Cdt 0.578, multimodal Cdt 0.672) while outperforming state-of-the-art late-fusion 3D-CNN-based models. Consistent performance was observed across the 3 independent multicenter test sets with Cdt values of 0.707 (UPenn-GBM, internal test set), 0.672 (UCSF-PDGM, first external test set), and 0.618 (RHUH-GBM, second external test set). The model achieved significant discrimination between patients with favorable and unfavorable survival for all 3 datasets (log-rank <i>P</i> 1.9 × 10<sup>-8</sup>, 9.7 × 10<sup>-3</sup>, and 1.2 × 10<sup>-2</sup>). Comparable results were obtained in the second setup using UCSF-PDGM for training/internal testing and UPenn-GBM and RHUH-GBM for external testing (Cdt 0.670, 0.638, and 0.621).</p><p><strong>Conclusions: </strong>The proposed transformer-based survival prediction model integrates complementary information from diverse input modalities, contributing to improved glioblastoma survival prediction compared to state-of-the-art methods. Consistent performance was observed across institutions supporting model generalizability.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在通过将磁共振图像、临床和分子病理学数据整合到基于变压器的深度学习模型中,改善胶质母细胞瘤的生存预测,解决数据异质性和性能通用性问题:我们提出并评估了一种基于变压器的非线性和非比例生存预测模型。该模型采用自监督学习技术,有效编码高维核磁共振成像输入,利用交叉注意力与非成像数据进行整合。为了证明模型的通用性,该模型在 2 个训练设置中使用 3 个独立的公共测试集进行了随时间变化的一致性指数(Cdt)评估:UPenn-GBM、UCSF-PDGM 和 Rio Hortega 大学医院(RHUH)-GBM 分别包含 378、366 和 36 个病例:所提出的转换器模型在成像和非成像数据方面都取得了可喜的成绩,有效整合了两种模式以提高性能(UCSF-PDGM 测试集,成像 Cdt 0.578,多模态 Cdt 0.672),同时优于最先进的基于后期融合 3D-CNN 的模型。在 3 个独立的多中心测试集中观察到了一致的表现,Cdt 值分别为 0.707(UPenn-GBM,内部测试集)、0.672(UCSF-PDGM,第一个外部测试集)和 0.618(RHUH-GBM,第二个外部测试集)。在所有 3 个数据集中,该模型都能明显区分生存率高和生存率低的患者(对数秩 P 分别为 1.9 × 10-8、9.7 × 10-3 和 1.2 × 10-2)。在第二个设置中,使用 UCSF-PDGM 进行训练/内部测试,UPenn-GBM 和 RHUH-GBM 进行外部测试(Cdt 分别为 0.670、0.638 和 0.621),获得了相似的结果:与最先进的方法相比,基于转换器的生存预测模型整合了来自不同输入模式的互补信息,有助于改善胶质母细胞瘤的生存预测。在不同机构观察到的一致表现支持了模型的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive multimodal deep learning survival prediction enabled by a transformer architecture: A multicenter study in glioblastoma.

Background: This research aims to improve glioblastoma survival prediction by integrating MR images, clinical, and molecular-pathologic data in a transformer-based deep learning model, addressing data heterogeneity and performance generalizability.

Methods: We propose and evaluate a transformer-based nonlinear and nonproportional survival prediction model. The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with nonimaging data using cross-attention. To demonstrate model generalizability, the model is assessed with the time-dependent concordance index (Cdt) in 2 training setups using 3 independent public test sets: UPenn-GBM, UCSF-PDGM, and Rio Hortega University Hospital (RHUH)-GBM, each comprising 378, 366, and 36 cases, respectively.

Results: The proposed transformer model achieved a promising performance for imaging as well as nonimaging data, effectively integrating both modalities for enhanced performance (UCSF-PDGM test-set, imaging Cdt 0.578, multimodal Cdt 0.672) while outperforming state-of-the-art late-fusion 3D-CNN-based models. Consistent performance was observed across the 3 independent multicenter test sets with Cdt values of 0.707 (UPenn-GBM, internal test set), 0.672 (UCSF-PDGM, first external test set), and 0.618 (RHUH-GBM, second external test set). The model achieved significant discrimination between patients with favorable and unfavorable survival for all 3 datasets (log-rank P 1.9 × 10-8, 9.7 × 10-3, and 1.2 × 10-2). Comparable results were obtained in the second setup using UCSF-PDGM for training/internal testing and UPenn-GBM and RHUH-GBM for external testing (Cdt 0.670, 0.638, and 0.621).

Conclusions: The proposed transformer-based survival prediction model integrates complementary information from diverse input modalities, contributing to improved glioblastoma survival prediction compared to state-of-the-art methods. Consistent performance was observed across institutions supporting model generalizability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
International symposium on inheritable central nervous system (CNS) cancer predisposition: A prologue. Correction to: Effect of bevacizumab on refractory meningiomas: 3D volumetric growth rate versus response assessment in neuro-oncology criteria. Effect of antibiotic drug use on outcome and therapy-related toxicity in patients with glioblastoma-A retrospective cohort study. Empowering the next generation in neuro-oncology: Introduction of the EANO Career Boost Initiative. A phase 1 dose escalation of pritumumab in patients with refractory or recurrent gliomas or brain metastases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1